Banana and Plantains: Improvement, Nutrition, and Health

Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Banana is one of the oldest cultivated plant known for its dietary and medicinal properties. Banana is grown in the tropical and subtropical regions of the world and constitutes the staple food of the people. They are classified as dessert or sweet bananas and cooking bananas or plantains depending on whether they can be eaten raw or not. Banana plant parts such as the roots, pseudostem, fruits, and inflorescence is used in some or the other way and therefore it is rightly called as the “Kalpatharu” in India. Banana and plantains contain important bioactive compounds such as phenolics, flavonoids, carotenoids, biogenic amines, sterols, and antimicrobial compounds which make bananas a perfect functional food for health improvement. Presently, research is focused on exploring and identifying compounds, refining the techniques of isolation and purification, and using it in modern medicines. Moreover, bananas are also being used as a platform to produce and accumulate important nutrients like vitamins and minerals by biofortification strategies.

Keywords

Bananas Bioactive compounds Carotenoids Dopamine Antimicrobials Biofortification 

References

  1. 1.
    Martin G, Baurens FC, Cardi C, Aury JM, D’Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8:e67350CrossRefGoogle Scholar
  2. 2.
    Bakry F, Carreel F, Jenny C, Horry JP (2009) Genetic improvement of banana. In: Breeding plantation tree crops: tropical species. Springer, New York, pp 3–50CrossRefGoogle Scholar
  3. 3.
    FAOSTAT (2016) http://www.fao.org/faostat. Accessed on 22 Dec 2017
  4. 4.
    Kumar KPS, Bhowmik D, Duraivel S, Umadevi M (2012) Traditional and medicinal uses of banana. J Pharmacogn Phytochem 1:51–63Google Scholar
  5. 5.
    Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J, Zaplin E, Rosenberg Y, James A, Mlalazi B, Deo P (2017) Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol J 15:520–532CrossRefGoogle Scholar
  6. 6.
    National Nutrient Database (2016) https://ndb.nal.usda.gov/ndb/foods/show/2159. Accessed on 30 May 2017
  7. 7.
    Imam MZ, Akter S (2011) Musa paradisiaca L. and Musa sapientum L.: a phytochemical and pharmacological review. J Appl Pharm Sci 1:14–20Google Scholar
  8. 8.
    Pothavorn P, Kitdamrongsont K, Swangpol S, Wongniam S, Atawongsa K, Svasti J et al (2010) Sap phytochemical compositions of some bananas in Thailand. J Agric Food Chem 58:8782–8787CrossRefGoogle Scholar
  9. 9.
    Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16:3895–3914CrossRefGoogle Scholar
  10. 10.
    Singh SP, Gruissem W, Bhullar NK (2017) Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Sci Rep 7:6883CrossRefGoogle Scholar
  11. 11.
    Horry J, Jay M (1988) Distribution of anthocyanins in wild and cultivated banana varieties. Phytochemistry 27:2667–2672CrossRefGoogle Scholar
  12. 12.
    Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds – recent developments. Trends Food Sci Technol 12:401–413CrossRefGoogle Scholar
  13. 13.
    Kitdamrongsont K, Pothavorn P, Swangpol S, Wongniam S, Atawongsa K, Svasti J, Somana J (2008) Anthocyanin composition of wild bananas in Thailand. J Agric Food Chem 56:10853–10857CrossRefGoogle Scholar
  14. 14.
    Afanas'ev IB, Dcrozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 38:1763–1769CrossRefGoogle Scholar
  15. 15.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956CrossRefGoogle Scholar
  16. 16.
    Atala E, Fuentes J, Wehrhahn MJ, Speisky H (2017) Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation. Food Chem 234:479–485CrossRefGoogle Scholar
  17. 17.
    De Ascensao ARFDC, Dubery IA (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry 63:679–686CrossRefGoogle Scholar
  18. 18.
    Schmidt MM, Prestes RC, Kubota EH, Scapin G, Mazutti MA (2015) Evaluation of antioxidant activity of extracts of banana inflorescences (Musa cavendishii). CyTA-J Food 13:498–505CrossRefGoogle Scholar
  19. 19.
    Mathew NS, Negi PS (2017) Traditional uses, phytochemistry and pharmacology of wild banana (Musa acuminata Colla): a review. J Ethnopharmacol 196:124–140CrossRefGoogle Scholar
  20. 20.
    Lewis DA, Fields WN, Shaw GP (1999) A natural flavonoid present in unripe plantain banana pulp (Musa sapientum L. var. paradisiaca) protects the gastric mucosa from aspirin-induced erosions. J Ethnopharmacol 65:283–288CrossRefGoogle Scholar
  21. 21.
    Pazmiño-Durána EA, Giusti MM, Wrolstad RE, Glória MBA (2001) Anthocyanins from banana bracts (Musa paradisiaca) as potential food colorants. Food Chem 73:327–332CrossRefGoogle Scholar
  22. 22.
    Bennett RN, Shiga TM, Hassimotto NM, Rosa EA, Lajolo FM, Cordenunsi BR (2010) Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminata Juss.) cultivars. J Agric Food Chem 58:7991–8003CrossRefGoogle Scholar
  23. 23.
    Someya S, Yoshiki Y, Okubo K (2002) Antioxidant compounds from bananas (Musa Cavendish). Food Chem 79:351–354CrossRefGoogle Scholar
  24. 24.
    Rebello LP, Ramos AM, Pertuzatti PB, Barcia MT, Castillo-Muñoz N, Hermosín-Gutiérrez I (2014) Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Res Int 55:397–403CrossRefGoogle Scholar
  25. 25.
    Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203CrossRefGoogle Scholar
  26. 26.
    Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in Cavendish banana. J Agric Food Chem 48:844–848CrossRefGoogle Scholar
  27. 27.
    de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2000) Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J Agric Food Chem 48:5331–5337CrossRefGoogle Scholar
  28. 28.
    Santos JR, Bakry F, Brillouet JM (2010) A preliminary chemotaxonomic study on the condensed tannins of green banana flesh in the Musa genus. Biochem Syst Ecol 38:1010–1017CrossRefGoogle Scholar
  29. 29.
    Loganayaki N, Rajendrakumaran D, Manian S (2010) Antioxidant capacity and phenolic content of different solvent extracts from banana (Musa paradisiaca) and mustai (Rivea hypocrateriformis). Food Sci Biotechnol 19:1251–1258CrossRefGoogle Scholar
  30. 30.
    Johnson EJ (2002) The role of carotenoids in human health. Nutr Clin Care 5:56–65CrossRefGoogle Scholar
  31. 31.
    Kiokias S, Proestos C, Varzakas T (2016) A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Curr Res Nutr Food Sci J 4:25–37CrossRefGoogle Scholar
  32. 32.
    Akoh CC, Min BD (1997) Food lipid chemistry, nutrition and biotechnology. Marcel Dekker, New YorkGoogle Scholar
  33. 33.
    Wills RBH, Lim JSK, Greenfield H (1986) Composition of Australian foods. 31. Tropical and sub-tropical fruit. Food Technol Aust 38:118–123Google Scholar
  34. 34.
    Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, Douglas LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of U.S. foods: an update of the database. J Food Compos Anal 12:169–196CrossRefGoogle Scholar
  35. 35.
    Englberger L, Schierle J, Aalbersberg W, Hofmann P, Humphries J, Huang A, Lorens A, Levendusky AM, Daniells J, Marks GC, Fitzgerald MH (2006) Carotenoid and vitamin content of Karat and other Micronesian banana cultivars. Int J Food Sci Nutr 57:399–418CrossRefGoogle Scholar
  36. 36.
    Englberger L, Wills RB, Blades B, Dufficy L, Daniells JW, Coyne T (2006) Carotenoid content and flesh color of selected banana cultivars growing in Australia. Food Nutr Bull 27:281–291CrossRefGoogle Scholar
  37. 37.
    Buah S, Mlalazi B, Khanna H, Dale JL, Mortimer CL (2016) The quest for golden bananas: investigating carotenoid regulation in a Fe’i group Musa cultivar. J Agric Food Chem 64:3176–3185CrossRefGoogle Scholar
  38. 38.
    Englberger L, Darnton-Hill I, Coyne T, Fitzgerald MH, Marks GC (2003) Carotenoid-rich bananas: a potential food source for alleviating vitamin A deficiency. Food Nutr Bull 24:303–318CrossRefGoogle Scholar
  39. 39.
    Ekesa BN, Poulaert M, Davey MW, Kimiywe J, Van den Bergh I, Blomme G, Dhuique-Mayer C (2012) Bioaccessibility of provitamin A carotenoids in bananas (Musa spp.) and derived dishes in African countries. Food Chem 133:1471–1477CrossRefGoogle Scholar
  40. 40.
    Fungo R, Pillay M (2011) β-Carotene content of selected banana genotypes from Uganda. Afr J Biotechnol 10:5423–5430Google Scholar
  41. 41.
    Arora A, Choudhary D, Agarwal G, Singh VP (2008) Compositional variation in β-carotene content, carbohydrate and antioxidant enzymes in selected banana cultivars. Int J Food Sci Technol 43:1913–1921CrossRefGoogle Scholar
  42. 42.
    Dhandapani R, Singh VP, Arora A, Bhattacharya RC, Rajendran A (2017) Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPsy) gene in banana (Musa sp) cultivars. J Food Sci Technol 54:4416–4426CrossRefGoogle Scholar
  43. 43.
    Ekesa B, Nabuuma D, Blomme G, Van den Bergh I (2015) Provitamin a carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern Africa. J Food Compos Anal 43:1–6CrossRefGoogle Scholar
  44. 44.
    Subagio A, Morita N, Sawada S (1996) Carotenoids and their fatty-acid esters in banana peel. J Nutr Sci Vitaminol 42:553–566CrossRefGoogle Scholar
  45. 45.
    Suparmi S, Prasetya H, Martosupono M, Sunaryanto LT (2014) Effect of beta-Carotene from yellow ambon banana peel on rat serum retinol level. J Pure Appl Chem Res 3:83–87CrossRefGoogle Scholar
  46. 46.
    Kumar SR, Baskaran V (2012) Assay of carotenoid composition and retinol equivalents in plants. In: Preedy VR (ed) Vitamin A and carotenoids: chemistry, analysis, function and effects. RSC Publishing, London, pp 221–248CrossRefGoogle Scholar
  47. 47.
    Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. Am J Clin Nutr 83:1265–1271CrossRefGoogle Scholar
  48. 48.
    Lehrman L, Kabat EA (1937) The fatty acids associated with banana starch. J Am Chem Soc 59:1050–1051CrossRefGoogle Scholar
  49. 49.
    Vilela C, Santos SA, Villaverde JJ, Oliveira L, Nunes A, Cordeiro N, Freire CS, Silvestre AJ (2014) Lipophilic phytochemicals from banana fruits of several Musa species. Food Chem 162:247–252CrossRefGoogle Scholar
  50. 50.
    Morais DR, Rotta EM, Sargi SC, Bonafe EG, Suzuki RM, Souza NE, Matsushita M, Visentainer JV (2017) Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J Braz Chem Soc 28:308–318Google Scholar
  51. 51.
    Oliveira L, Freire CS, Silvestre AJ, Cordeiro N, Torres IC, Evtuguin D (2006) Lipophilic extractives from different morphological parts of banana plant “Dwarf Cavendish”. Ind Crop Prod 23:201–211CrossRefGoogle Scholar
  52. 52.
    Oliveira L, Freire CS, Silvestre AJ, Cordeiro N (2008) Lipophilic extracts from banana fruit residues: a source of valuable phytosterols. J Agric Food Chem 56:9520–9524CrossRefGoogle Scholar
  53. 53.
    Knapp FF, Nicholas HJ (1969) The sterols and triterpenes of banana pulp. J Food Sci 34:584–586CrossRefGoogle Scholar
  54. 54.
    Villaverde JJ, Oliveira L, Vilela C, Domingues RM, Freitas N, Cordeiro N, Freire CS, Silvestre AJ (2013) High valuable compounds from the unripe peel of several Musa species cultivated in Madeira Island (Portugal). Ind Crop Prod 42:507–512CrossRefGoogle Scholar
  55. 55.
    Ortega RM, Palencia A, López-Sobaler AM (2006) Improvement of cholesterol levels and reduction of cardiovascular risk via the consumption of phytosterols. Br J Nutr 96:S89–S93CrossRefGoogle Scholar
  56. 56.
    Marangoni F, Poli A (2010) Phytosterols and cardiovascular health. Pharmacol Res 61:193–199CrossRefGoogle Scholar
  57. 57.
    Genser B, Silbernagel G, De Backer G, Bruckert E, Carmena R, Chapman MJ, Deanfield J, Descamps OS, Rietzschel ER, Dias KC, März W (2012) Plant sterols and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J 33:444–451CrossRefGoogle Scholar
  58. 58.
    Ras RT, van der Schouw YT, Trautwein EA, Sioen I, Dalmeijer GW, Zock PL, Beulens JW (2015) Intake of phytosterols from natural sources and risk of cardiovascular disease in the European prospective investigation into cancer and nutrition-the Netherlands (EPIC-NL) population. Eur J Prev Cardiol 22:1067–1075CrossRefGoogle Scholar
  59. 59.
    Quilez J, Garcia-Lorda P, Salas-Salvado J (2003) Potential uses and benefits of phytosterols in diet: present situation and future directions. Clin Nutr 22:343–351CrossRefGoogle Scholar
  60. 60.
    Bouic PJ, Lamprecht JH (1999) Plant sterols and sterolins: a review of their immune-modulating properties. Altern Med Rev 4:170–177Google Scholar
  61. 61.
    Valerio M, Liu HB, Heffner R, Zivadinov R, Ramanathan M, Weinstock-Guttman B, Awad AB (2011) Phytosterols ameliorate clinical manifestations and inflammation in experimental autoimmune encephalomyelitis. Inflamm Res 60:457–465CrossRefGoogle Scholar
  62. 62.
    Ramprasath VR, Awad AB (2015) Role of phytosterols in cancer prevention and treatment. J AOAC Int 98:735–738CrossRefGoogle Scholar
  63. 63.
    Bradford PG, Awad AB (2007) Phytosterols as anticancer compounds. Mol Nutr Food Res 51:161–170CrossRefGoogle Scholar
  64. 64.
    Woyengo TA, Ramprasath VR, Jones PJ (2009) Anticancer effects of phytosterols. Eur J Clin Nutr 63:813–820CrossRefGoogle Scholar
  65. 65.
    Sheng Z, Dai H, Pan S, Ai B, Zheng L, Zheng X, Prinyawiwatkul W, Xu Z (2017) Phytosterols in banana (Musa spp.) flower inhibit α-glucosidase and α-amylase hydrolysations and glycation reaction. Int J Food Sci Technol 52:171–179CrossRefGoogle Scholar
  66. 66.
    Crout JR, Sjoerdsma A (1959) The clinical and laboratory significance of serotonin and catechol amines in bananas. N Engl J Med 261:23–26CrossRefGoogle Scholar
  67. 67.
    Davidson L, Vandongen R, Beilin LJ (1981) Effect of eating bananas on plasma free and sulfate-conjugated catecholamines. Life Sci 29:1773–1778CrossRefGoogle Scholar
  68. 68.
    Lassois L, De CC, Frettinger P, De LL, Lepoivre P, Haïssam MJ (2011) Catecholamine biosynthesis pathway potentially involved in banana defense mechanisms to crown rot disease. Commun Agric Appl Biol Sci 76:591–601Google Scholar
  69. 69.
    Kuchel OT, Buu NT, Serri O (1982) Sulfoconjugation of catecholamines, nutrition, and hypertension. Hypertension 4:III93CrossRefGoogle Scholar
  70. 70.
    de Jong WH, Post WJ, Kerstens MN, de Vries EG, Kema IP (2010) Elevated urinary free and deconjugated catecholamines after consumption of a catecholamine-rich diet. J Clin Endocrinol Metab 95:2851–2855CrossRefGoogle Scholar
  71. 71.
    Romphophak T, Siriphanich J, Ueda Y, Abe K, Chachin K (2005) Changes in concentrations of phenolic compounds and polyphenol oxidase activity in banana peel during storage. Food Preserv Sci 31:111–115CrossRefGoogle Scholar
  72. 72.
    Bapat VA, Suprasanna P, Ganapathi TR, Rao PS (2000) In vitro production of L-DOPA in tissue cultures of banana. Pharm Biol 38:271–273CrossRefGoogle Scholar
  73. 73.
    Laverty R (1978) Catecholamines: role in health and disease. Drugs 16:418–440CrossRefGoogle Scholar
  74. 74.
    Nagatsu T (2006) The catecholamine system in health and disease. Proc Jpn Acad Ser B Phys Biol Sci 82:388–415CrossRefGoogle Scholar
  75. 75.
    Goerendt IK, Messa C, Lawrence AD, Grasby PM, Piccini P, Brooks DJ (2003) Dopamine release during sequential finger movements in health and Parkinson’s disease: a PET study. Brain 126:312–325CrossRefGoogle Scholar
  76. 76.
    Narvaes R, Martins de Almeida RM (2014) Aggressive behavior and three neurotransmitters: dopamine, GABA, and serotonin-A review of the last 10 years. Psychol Neurosci 7:601CrossRefGoogle Scholar
  77. 77.
    Waalkes TP, Sjoerdsma A, Creveling CR, Weissbach H, Udenfriend S (1958) Serotonin, norepinephrine, and related compounds in bananas. Science 127:648–650CrossRefGoogle Scholar
  78. 78.
    Badria FA (2002) Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J Med Food 5:153–157CrossRefGoogle Scholar
  79. 79.
    Vettorazzi (1974) 5-Hydroxytryptamine content of bananas and banana products. Food Cosmet Toxicol 12:107–113CrossRefGoogle Scholar
  80. 80.
    Adão RC, Glória MB (2005) Bioactive amines and carbohydrate changes during ripening of Prata'banana (Musa acuminata × M. balbisiana). Food Chem 90:705–711CrossRefGoogle Scholar
  81. 81.
    Young SN (2007) How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci 32:394Google Scholar
  82. 82.
    Rice SL, Eitenmiller RR, Koehler PE (1976) Biologically active amines in food: a review. J Milk Food Technol 39:353–358CrossRefGoogle Scholar
  83. 83.
    Czajkowska-Mysłek A, Leszczyńska J (2017) Risk assessment related to biogenic amines occurrence in ready-to-eat baby foods. Food Chem Toxicol 105:82–92CrossRefGoogle Scholar
  84. 84.
    Baston O, Moise D, Barna O, Pricop E (2009) Bioactive amines content in “Dwarf Cavendish banana” stored at different temperatures. Lucr ŞtiinŃ seria Agron 52:603–606Google Scholar
  85. 85.
    Hunter DC, Burritt DJ (2012) Polyamines of plant origin - An important dietary consideration for human health. In: Venketeshwer R (ed). Phytochemicals as nutraceuticals - Global approaches to their role in nutrition and health. InTech: Rijeka, Croatia. pp. 225–244.Google Scholar
  86. 86.
    Swanson MD, Winter HC, Goldstein IJ, Markovitz DM (2010) A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem 285:8646–8655CrossRefGoogle Scholar
  87. 87.
    Martinez JA (2012) Natural Fungicides obtained from plants. In: D. Dhanasekaran, N. Thajuddin, and A. Panneerselvam (eds). In Fungicides for Plant and Animal Diseases. InTech: Rijeka, Croatia pp. 1–28. Google Scholar
  88. 88.
    Jalani FF, Mohamad S, Shahidan WN (2014) Antibacterial effects of banana pulp extracts based on different extraction methods against selected microorganisms. Asian J Biomed Pharm Sci 4:14CrossRefGoogle Scholar
  89. 89.
    Naikwade PV, Gaurav S, Sharayu D, Kailas J (2014) Evaluation of antibacterial properties of Musa paradisiaca L. Leaves. In: Proceedings of the national conference on conservation of natural resources & biodiversity for sustainable developmentGoogle Scholar
  90. 90.
    Asuquo EG, Udobi CE (2016) Antibacterial and toxicity studies of the ethanol extract of Musa paradisiaca leaf. Cogent Biol 2:1219248CrossRefGoogle Scholar
  91. 91.
    Zafar IM, Saleha A, Hoque MM, Sohel RM (2011) Antimicrobial and cytotoxic properties of different extracts of Musa sapientum L. subsp. sylvestris. Int Res J Pharm 2:62–65Google Scholar
  92. 92.
    Jain P, Bhuiyan MH, Hossain KR, Bachar SC (2011) Antibacterial and antioxidant activities of local seeded banana fruits. Afr J Pharm Pharmacol 5:1398–1403CrossRefGoogle Scholar
  93. 93.
    Ehiowemwenguan G, Emoghene AO, Inetianbor JE (2014) Antibacterial and phytochemical analysis of banana fruit peel. IOSR J Pharm 4:18–25Google Scholar
  94. 94.
    Kapadia SP, Pudakalkatti PS, Shivanaikar S (2015) Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: an in vitro study. Contemp Clin Dent 6:496CrossRefGoogle Scholar
  95. 95.
    Franco PB, Almeida LA, Marques RF, da Silva MA, Campos MG (2017) Chitosan associated with the extract of unripe banana peel for potential wound dressing application. Int J Polym Sci 2017:9761047CrossRefGoogle Scholar
  96. 96.
    Tin HS, Padam BS, Vairappan CS, Abdullah MI, Chye FY (2015) Effect of preparation and extraction parameters of banana (Musa balbisiana cv. Saba) inflorescence on their antibacterial activities. Sains Malays 44:1301–1307CrossRefGoogle Scholar
  97. 97.
    Padam BS, Tin HS, Chye FY, Abdullah MI (2012) Antibacterial and antioxidative activities of the various solvent extracts of banana (Musa paradisiaca cv. Mysore) inflorescences. J Biol Sci 12:62–73CrossRefGoogle Scholar
  98. 98.
    Sumathy V, Lachumy SJ, Zakaria Z, Sasidharan S (2011) In vitro bioactivity and phytochemical screening of Musa acuminata flower. Pharmacologyonline 2:118–127Google Scholar
  99. 99.
    Venkatesh KV, Girish Kumar K, Pradeepa K, Santhosh Kumar SR (2013) Antibacterial activity of ethanol extract of Musa paradisiaca cv. Puttabale and Musa acuminate cv. Grand Naine. Asian J Pharm Clin Res 6:169–172Google Scholar
  100. 100.
    Karuppiah P, Mustaffa M (2013) Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pac J Trop Biomed 3:737–742CrossRefGoogle Scholar
  101. 101.
    Mordi RC, Fadiaro AE, Owoeye TF, Olanrewaju IO, Uzoamaka GC, Olorunshola SJ (2016) Identification by GC-MS of the components of oils of banana peels extract, phytochemical and antimicrobial analyses. Res J Phytochem 10:39–44CrossRefGoogle Scholar
  102. 102.
    Onyema CT, Ofor CE, Okudo VC, Ogbuagu AS (2016) Phytochemical and antimicrobial analysis of banana pseudo stem (Musa acuminata). Br J Pharm Res 10:1–9CrossRefGoogle Scholar
  103. 103.
    Camacho-Corona MD, Ramírez-Cabrera MA, Santiago OG, Garza-González E, Palacios ID, Luna-Herrera J (2008) Activity against drug resistant-tuberculosis strains of plants used in Mexican traditional medicine to treat tuberculosis and other respiratory diseases. Phytother Res 22:82–85CrossRefGoogle Scholar
  104. 104.
    Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883CrossRefGoogle Scholar
  105. 105.
    Min BR, Pinchak WE, Merkel R, Walker S, Tomita G, Anderson RC (2008) Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Sci Res Essay 3:066–073Google Scholar
  106. 106.
    Meenashree B, Vasanthi VJ, Mary RN (2014) Evaluation of total phenolic content and antimicrobial activities exhibited by the leaf extracts of Musa acuminata (banana). Int J Curr Microbiol Appl Sci 3:136–141Google Scholar
  107. 107.
    Bankar AM, Dole MN (2016) Formulation and evaluation of herbal antimicrobial gel containing Musa acuminata leaves extract. J Pharmacog Phytochem 5:1Google Scholar
  108. 108.
    Martins FO, Fingolo CE, Kuster RM, Kaplan MA, Romanos MT (2009) Antiviral activity of Musa acuminata Colla, Musaceae. Rev Bras Farmacogn 19:781–784Google Scholar
  109. 109.
    Mitchell CA, Ramessar K, O’keefe BR (2017) Antiviral lectins: selective inhibitors of viral entry. Antivir Res 142:37–54CrossRefGoogle Scholar
  110. 110.
    Koshte VL, Van Dijk W, Van Der Stelt ME, Aalberse RC (1990) Isolation and characterization of BanLec-I, a mannoside-binding lectin from Musa paradisiac (banana). Biochem J 272:721–726CrossRefGoogle Scholar
  111. 111.
    Mo H, Winter HC, Van Damme EJ, Peumans WJ, Misaki A, Goldstein IJ (2001) Carbohydrate binding properties of banana (Musa acuminata) lectin. FEBS J 268:2609–2615Google Scholar
  112. 112.
    Winter HC, Oscarson S, Slättegård R, Tian M, Goldstein IJ (2005) Banana lectin is unique in its recognition of the reducing unit of 3-O-β-glucosyl/mannosyl disaccharides: a calorimetric study. Glycobiology 15:1043–1050CrossRefGoogle Scholar
  113. 113.
    Bajaj M, Hinge A, Limaye LS, Gupta RK, Surolia A, Kale VP (2010) Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism. Glycobiology 21:521–529CrossRefGoogle Scholar
  114. 114.
    Cheung AH, Wong JH, Ng TB (2009) Musa acuminata (Del Monte banana) lectin is a fructose-binding lectin with cytokine-inducing activity. Phytomedicine 16:594–600CrossRefGoogle Scholar
  115. 115.
    Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono Y, Sanada C, Barikmo I (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:3CrossRefGoogle Scholar
  116. 116.
    Rahman T, Hosen I, Islam MT, Shekhar HU (2012) Oxidative stress and human health. Adv Biosci Biotechnol 3:997CrossRefGoogle Scholar
  117. 117.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9CrossRefGoogle Scholar
  118. 118.
    Bhatt A, Patel V (2015) Antioxidant potential of banana: study using simulated gastrointestinal model and conventional extraction. Indian J Exp Biol 53:457–461Google Scholar
  119. 119.
    Harris PL, Poland GL (1939) Variations in ascorbic acid content of bananas. J Food Sci 4:317–327CrossRefGoogle Scholar
  120. 120.
    Fatemeh SR, Saifullah R, Abbas FM, Azhar ME (2012) Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: influence of variety and stage of ripeness. Int Food Res J 19:1041–1046Google Scholar
  121. 121.
    Padilla-Camberos E, Flores-Fernández JM, Canales-Aguirre AA, Barragán-Álvarez CP, Gutiérrez-Mercado Y, Lugo-Cervantes E (2016) Wound healing and antioxidant capacity of Musa paradisiaca Linn. peel extracts. J Pharm Pharmacog Res 4:165–173Google Scholar
  122. 122.
    Heng Z, Sheng O, Yan S, Lu H, Motorykin I, Gao H, Li C, Yang Q, Hu C, Kuang R, Bi F (2017) Carotenoid profiling in the peel and pulp of 36 selected Musa varieties. Food Sci Technol Res 23:603–611CrossRefGoogle Scholar
  123. 123.
    Adedayo BC, Oboh G, Oyeleye SI, Olasehinde TA (2016) Antioxidant and antihyperglycemic properties of three banana cultivars (Musa spp.) Scientifica 2016:8391398CrossRefGoogle Scholar
  124. 124.
    Aquino CF, Salomão LC, Ribeiro S, Rocha M, Siqueira DL, Cecon PR (2016) Carbohydrates, phenolic compounds and antioxidant activity in pulp and peel of 15 banana cultivars. Rev Bras Frutic 38(4):e-090CrossRefGoogle Scholar
  125. 125.
    Imam MZ, Akter S, Mazumder ME, Rana MS (2011) Antioxidant activities of different parts of Musa sapientum L. ssp. sylvestris fruit. J Appl Pharm Sci 1:68–72Google Scholar
  126. 126.
    Vijayakumar S, Presannakumar G, Vijayalakshmi NR (2008) Antioxidant activity of banana flavonoids. Fitoterapia 79:279–282CrossRefGoogle Scholar
  127. 127.
    Baskar R, Shrisakthi S, Sathyapriya B, Shyampriya R, Nithya R, Poongodi P (2011) Antioxidant potential of peel extracts of banana varieties (Musa sapientum). Food Nutr Sci 2:1128CrossRefGoogle Scholar
  128. 128.
    Bhaskar JJ, Chilkunda ND, Salimath PV (2011) Banana (Musa sp. var. elakki bale) flower and pseudostem: dietary fiber and associated antioxidant capacity. J Agric Food Chem 60:427–432CrossRefGoogle Scholar
  129. 129.
    Sheng ZW, Ma WH, Gao JH, Bi Y, Zhang WM, Dou HT, Jin ZQ (2011) Antioxidant properties of banana flower of two cultivars in China using 2, 2-diphenyl-1-picrylhydrazyl (DPPH,) reducing power, 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and inhibition of lipid peroxidation assays. Afr J Biotechnol 10:4470–4477Google Scholar
  130. 130.
    Arya Krishnan S, Sinija VR (2016) Proximate composition and antioxidant activity of banana blossom of two cultivars in India. Int J Agric Food Sci Technol 7:13–22Google Scholar
  131. 131.
    Joseph J, Paul D, Kavitha MP, Dineshkumar B, Menon JS, Bhat AR, Krishnakumar K (2014) Preliminary phytochemical screening and in vitro antioxidant activity of banana flower (Musa paradisiaca AAB Nendran variety). J Pharm Res 8:144–147Google Scholar
  132. 132.
    Waghmare JS, Kurhade AH (2014) GC-MS analysis of bioactive components from banana peel (Musa sapientum peel). Eur J Exp Biol 4:10–15Google Scholar
  133. 133.
    Roobha JJ, Saravanakumar M, Aravindhan KM, Suganyadevi P (2011) In vitro evaluation of anticancer property of anthocyanin extract from Musa acuminata bract. Res Pharm 1:17–21Google Scholar
  134. 134.
    Dahham SS, Mohamad TA, Tabana YM, Majid AM (2015) Antioxidant activities and anticancer screening of extracts from banana fruit (Musa sapientum). Acad J Cancer Res 8:28–34Google Scholar
  135. 135.
    Nadumane VK, Timsina B (2014) Anti-cancer potential of banana flower extract: an in vitro study. Bangladesh J Pharmacol 9:628–635CrossRefGoogle Scholar
  136. 136.
    Wu HM, Xu FH, Hao J, Yang Y, Wang X (2015) Antihyperglycemic activity of banana (Musa nana Lour.) peel and its active ingredients in alloxan-induced diabetic mice. In 3rd international conference on material, mechanical and manufacturing engineering, pp 231–238Google Scholar
  137. 137.
    Jaber H, Baydoun E, Ola EZ, Kreydiyyeh SI (2013) Anti-hyperglycemic effect of the aqueous extract of banana infructescence stalks in streptozotocin-induced diabetic rats. Plant Foods Hum Nutr 68:83–89CrossRefGoogle Scholar
  138. 138.
    Kappel VD, Cazarolli LH, Pereira DF, Postal BG, Madoglio FA, Buss ZD, Reginatto FH, Silva FR (2013) Beneficial effects of banana leaves (Musa x paradisiaca) on glucose homeostasis: multiple sites of action. Rev Bras Farmacogn 23:706–715CrossRefGoogle Scholar
  139. 139.
    Silva AR, Cerdeira CD, Brito AR, Salles BC, Ravazi GF, Moraes GD, Rufino LR, Oliveira RB, Santos GB (2016) Green banana pasta diet prevents oxidative damage in liver and kidney and improves biochemical parameters in type 1 diabetic rats. Arch Endocrinol Metab 60:355–366CrossRefGoogle Scholar
  140. 140.
    Ramu R, Shirahatti PS, Zameer F, Dhananjaya BL, Prasad N (2016) Assessment of in vivo antidiabetic properties of umbelliferone and lupeol constituents of banana (Musa sp. var. Nanjangud Rasa Bale) flower in hyperglycaemic rodent model. PLoS One 11:e0151135CrossRefGoogle Scholar
  141. 141.
    Ramu R, Shirahatti PS, Zameer F, Ranganatha LV, Prasad MN (2014) Inhibitory effect of banana (Musa sp. var. Nanjangud rasa bale) flower extract and its constituents Umbelliferone and Lupeol on α-glucosidase, aldose reductase and glycation at multiple stages. S Afr J Bot 95:54–63CrossRefGoogle Scholar
  142. 142.
    Jawla S, Kumar Y, Khan MS (2012) Antimicrobial and antihyperglycemic activities of Musa paradisiaca flowers. Asian Pac J Trop Biomed 2:S914–S918CrossRefGoogle Scholar
  143. 143.
    Mallick C, Maiti R, Ghosh D (2006) Comparative study on antihyperglycemic and antihyperlipidemic effects of separate and composite extract of seed of Eugenia jambolana and root of Musa paradisiaca in streptozotocin-induced diabetic male albino rat. Iran J Pharmacol Ther 5:27–33Google Scholar
  144. 144.
    Phuaklee P, Ruangnoo S, Itharat A (2012) Anti-inflammatory and antioxidant activities of extracts from Musa sapientum peel. J Med Assoc Thail 95:S142–S146Google Scholar
  145. 145.
    Scarminio V, Fruet AC, Witaicenis A, Rall VL, Di Stasi LC (2012) Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis. Nutr Res 32:202–209CrossRefGoogle Scholar
  146. 146.
    Tandel KR, Shah BK (2012) Evaluation of gastric antiulcerogenic action of vegetable plantain banana (Musa sapientum var. Paradisiaca) in aspirin plus pylorus ligated albino rats. Int J Pharm Sci Res 3:4387Google Scholar
  147. 147.
    Prabha P, Karpagam T, Varalakshmi B, Packiavathy AS (2011) Indigenous anti-ulcer activity of Musa sapientum on peptic ulcer. Pharm Res 3:232Google Scholar
  148. 148.
    Onasanwo SA, Emikpe BO, Ajah AA, Elufioye TO (2013) Anti-ulcer and ulcer healing potentials of Musa sapientum peel extract in the laboratory rodents. Pharm Res 5:173Google Scholar
  149. 149.
    Ulser T (2016) Antiulcer activity of Musa paradisiaca (banana) tepal and skin extracts in ulcer induced albino mice. Malays J Anal Sci 20:1203–1216CrossRefGoogle Scholar
  150. 150.
    Pannangpetch P, Vuttivirojana A, Kularbkaew C, Tesana S, Kongyingyoes B, Kukongviriyapan V (2001) The antiulcerative effect of Thai Musa species in rats. Phytother Res 15:407–410CrossRefGoogle Scholar
  151. 151.
    Bhatnagar S, Garg VK, Sharma PK, Jain S (2011) Pelagia Research Library. Der Pharmacia Sinica 2:40–43Google Scholar
  152. 152.
    Gangwar AK, Ghosh AK (2014) To estimate the antiulcer activity of leaves of Musa sapientum Linn. by ethanol induced method in rats. Int J Pharmacog Phytochem Res 6:53–55Google Scholar
  153. 153.
    Goel RK, Sairam K, Rao CV, Raman A (2001) Role of gastric antioxidant and anti-Helicobactor pylori activities in anti ulcerogenic activity of plantain banana (Musa sapientum var. paradisiaca). Indian J Exp Biol 39:719–722Google Scholar
  154. 154.
    Sunil Kumar GB, Srinivas L, Ganapathi TR (2011) Iron fortification of banana by the expression of soybean ferritin. Biol Trace Elem Res 142:232–241CrossRefGoogle Scholar
  155. 155.
    Yadav K, Patel P, Srivastava AK, Ganapathi TR (2017) Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS One 12:e0188933CrossRefGoogle Scholar
  156. 156.
    Clendennen SK, López-Gómez R, Gómez-Lim M, Arntzen CJ, May GD (1998) The abundant 31-kilodalton banana pulp protein is homologous to class-III acidic chitinases. Phytochemistry 47:613–619CrossRefGoogle Scholar
  157. 157.
    Itou N, Kuroda H, Takane KI, Aoki K, Shibata D, Ezura H, Tanase K, inventors (2011) In planta innovations inc., University of Tsukuba, Kazusa Dna Research Institute, assignee. Fruit-specific promoter. United States patent application US 14/007,813Google Scholar
  158. 158.
    Ghag SB, Shekhawat UK, Ganapathi TR (2015) Silencing of MusaANR1 gene reduces proanthocyanidin content in transgenic banana plants. Plant Cell Tissue Organ Cult (PCTOC) 121:693–702CrossRefGoogle Scholar
  159. 159.
    Haas JD, Beard JL, Murray-Kolb LE, del Mundo AM, Felix A, Gregorio GB (2005) Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J Nutr 135:2823–2830CrossRefGoogle Scholar
  160. 160.
    Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40CrossRefGoogle Scholar
  161. 161.
    Gurmu F, Hussein S, Laing M (2014) The potential of orange-fleshed sweet potato to prevent vitamin A deficiency in Africa. Int J Vitam Nutr Res 84:65–78CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.UM-DAE Centre for Excellence in Basic SciencesMumbaiIndia
  2. 2.Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations