Skip to main content

Plant Proteases in Food Processing

  • Living reference work entry
  • First Online:
Book cover Bioactive Molecules in Food

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 373 Accesses

Abstract

Proteases are enzymes that hydrolyze protein molecules into peptides and amino acids. Proteases are the most commercially important enzymes because of their multiple applications in food and other industries. In recent decades, interest in plant proteases has been increased rapidly. The number of industrially employed enzymes of plant origin is still small but growing fast. Plants are an important source of proteases as plants require proteases throughout their life cycle. These are present in all kinds of plant tissues and, thus, can be extracted from their natural sources or can be prepared using in vitro techniques. Plant proteases can be extracted from natural sources by aqueous maceration of various plant organs. The crude extract thus obtained may be further purified to obtain a pure enzyme. Production of plant proteases by in vitro techniques leads to higher enzyme yields and minimizes the extraction procedures used in extraction from natural sources; these techniques reduce the effects of climate and seasonal changes and also the heterogeneity of enzymes produced from different parts of plant. Plant proteases have the ability to coagulate milk proteins and thus have been utilized as milk clotting enzymes in cheesemaking for centuries. These proteases are used as crude or in purified form; they are a substitute to the calf rennet. They are used for making different varieties of cheese in Mediterranean, West African, and southern European countries. Proteases extracted from different plant sources have been widely used in meat tenderization, in bioactive peptide production from both the plant and animal sources, and in flour/dough modification in baking industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44(2):211–220

    CAS  Google Scholar 

  2. Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, Del Rio LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  3. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez-Rabade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MC (2011) Production of plant proteases in vivo and in vitro–a review. Biotechnol Adv 29:983–996

    Article  CAS  PubMed  Google Scholar 

  5. Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    Article  CAS  PubMed  Google Scholar 

  6. Van der Hoorn RAL (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223

    Article  PubMed  CAS  Google Scholar 

  7. Uhlig H (1998) Industrial enzymes and their applications. Willey, New York

    Google Scholar 

  8. Barros RM, Ferreira CA, Silva SV, Malcata FX (2001) Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzym Microb Technol 29:541–547

    Article  CAS  Google Scholar 

  9. Esteves CLC, Lucey JA, Pires EMV (2002) Rheological properties of milk gels made using coagulants of plant origin and chymosin. Int Dairy J 12:427–434

    Article  CAS  Google Scholar 

  10. Esteves CLC, Lucey JA, Hyslop DB, Pires EMV (2003) Effect of gelation temperature on the properties of skim milk gels made from plant coagulants and chymosin. Int Dairy J 13:877–885

    Article  CAS  Google Scholar 

  11. Sanjuan E, Millan R, Saavedra P, Carmona MA, Gomez R, Fernandez-Salguero J (2002) Influence of animal and vegetable rennet on the physiochemical characteristics of Los Pedroches cheese during ripening. Food Chem 78:281–289

    Article  CAS  Google Scholar 

  12. Silva SV, Allmere T, Malcata FX, Andrén A (2003) Comparative studies on the gelling properties of cardosins extracted from Cynara cardunculus and chymosin on cow’s skim milk. Int Dairy J 13:558–564

    Article  CAS  Google Scholar 

  13. Silva SV, Malcata FX (2005) Studies pertaining to coagulant and proteolytic activities of plant proteases from Cynara cardunculus. Food Chem 89:19–26

    Article  CAS  Google Scholar 

  14. Low YH, Agboola S, Zhao J, Lim MY (2006) Clotting and proteolytic properties of plant coagulants in regular and ultrafiltered bovine skim milk. Int Dairy J 16:335–343

    Article  CAS  Google Scholar 

  15. Tejada L, Abellan A, Cayuela JM, Martinez-Cacha A (2006) Sensorial characteristics during ripening of the Murcia al Vino goat’s milk cheese. The effect of the type of coagulant used and the size of the cheese. J Sens Stud 21:333–347

    Article  Google Scholar 

  16. Tejada L, Abellan A, Cayuela JM, Martinez-Cacha A, Fernandez-Salguero J (2008) Proteolysis in goats’ milk cheese made with calf rennet and plant coagulant. Int Dairy J 18:139–146

    Article  CAS  Google Scholar 

  17. Galan E, Prados F, Pino A, Tejada L, Fernandez-Salguero J (2008) Influence of different amounts of vegetable coagulant from cardoon Cynara cardunculus and calf rennet on the proteolysis and sensory characteristics of cheeses made with sheep milk. Int Dairy J 18:93–98

    Article  CAS  Google Scholar 

  18. Agboola SO, Chan HH, Zhao J, Rehman A (2009) Can the use of Australian cardoon (Cynara cardunculus L.) coagulant overcome the quality problems associated with cheese made from ultrafiltered milk? LWT Food Sci Technol 42:1352–1359

    Article  CAS  Google Scholar 

  19. Pino A, Prados F, Galan E, McSweeney PLH, Fernandez-Salguero J (2009) Proteolysis during the ripening of goats’ milk cheese made with plant coagulant or calf rennet. Food Res Int 42:324–330

    Article  CAS  Google Scholar 

  20. Ordiales E, Martin A, Benito MJ, Hernandez A, Ruiz-Moyano S, Cordoba MG (2012) Technological characterisation by free zone capillary electrophoresis (FZCE) of the vegetable rennet (Cynara cardunculus) used in “Torta del Casar” cheese-making. Food Chem 133:227–235

    Article  CAS  Google Scholar 

  21. Ben Amira A, Makhlouf I, Petryt RF, Francis F, Bauwens J, Attia H, Besbes S, Blecker C (2017) Effect of extraction pH on techno-functional properties of crude extracts from wild cardoon (Cynara cardunculus L.) flowers. Food Chem 225:258–266

    Article  CAS  PubMed  Google Scholar 

  22. Ben Amira A, Mokni A, Yaich H, Chaabouni M, Besbes S, Blecker C, Attia H (2017) Technological properties of milk gels produced by chymosin and wild cardoon rennet optimized by response surface methodology. Food Chem 237:150–158

    Article  CAS  PubMed  Google Scholar 

  23. Ben Amira A, Blecker C, Richel A, Arias AA, Fickers P, Francis F, Besbes S, Attia H (2018) Influence of the ripening stage and the lyophilization of wild cardoon flowers on their chemical composition, enzymatic activities of extracts and technological properties of cheese curds. Food Chem 245:919–925

    Article  CAS  PubMed  Google Scholar 

  24. Liburdi K, Spinelli SE, Benucci I, Lombardelli C, Esti M (2018) A preliminary study of continuous milk coagulation using Cynara cardunculus flower extract and calf rennet immobilized on magnetic particles. Food Chem 239:157–164

    Article  CAS  PubMed  Google Scholar 

  25. Llorente BE, Brutti CB, Natalucci CL, Caffini NO (1997) Partial characterization of a milk clotting proteinase isolated from artichoke (Cynara scolymus L., Asteraceae). Acta Farm Bonaer 16:37–42

    CAS  Google Scholar 

  26. Llorente BE, Brutti CB, Caffini NO (2004) Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.). J Agric Food Chem 52:8182–8189

    Article  CAS  PubMed  Google Scholar 

  27. Llorente BE, Obregon WD, Aviles FX, Caffini NO, Vairo-Cavalli S (2014) Use of artichoke (Cynara scolymus) flower extract as a substitute for bovine rennet in the manufacture of gouda type cheese:characterization of aspartic proteases. Food Chem 159:55–63

    Article  CAS  PubMed  Google Scholar 

  28. Sidrach L, Garcia-Canovas F, Tudela J, Rodriguez-Lopez JN (2005) Purification of cynarases from artichoke (Cynara scolymus L.): enzymatic properties of cynarase A. Phytochemistry 66:41–49

    Article  CAS  PubMed  Google Scholar 

  29. Chazarra S, Sidrach L, Lopez-Molina D, Rodriguez-Lopez JN (2007) Characterization of the milk-clotting properties of extracts from artichoke (Cynara scolymus L) flowers. Int Dairy J 17:1393–1400

    Article  CAS  Google Scholar 

  30. Esposito M, Di Pierro P, Dejonghe W, Mariniell L, Porta R (2016) Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease. Food Chem 204:115–121

    Article  CAS  PubMed  Google Scholar 

  31. Brutti CB, Pardo MF, Caffini NO, Natalucci CL (2012) Onopordum acanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT Food Sci Technol 45:172–179

    Article  CAS  Google Scholar 

  32. Asakura T, Watanabe H, Keiko A, Soichi A (1997) Oryzasin as an aspartic proteinase occurring in rice seeds: purification, characterization, and application to milk-clotting. J Agric Food Chem 45:1070–1075

    Article  CAS  Google Scholar 

  33. Lufrano D, Faro R, Castanheira P, Parisi G, Verissimo P, Vairo-Cavalli S, Simoes I, Faro C (2012) Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae). Phytochemistry 81:7–18

    Article  CAS  PubMed  Google Scholar 

  34. Devaraj KB, Gowda LR, Prakash V (2008) An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochemistry 69:647–655

    Article  CAS  PubMed  Google Scholar 

  35. Faccia M, Picariello G, Trani A, Loizzo P, Gambacorta G, Lamacchia C, Di Luccia A (2012) Proteolysis of Cacioricotta cheese made from goat milk coagulated with caprifig (Ficus carica sylvestris) or calf rennet. Eur Food Res Technol 234:527–533

    Article  CAS  Google Scholar 

  36. Hashim MM, Mingsheng D, Iqbal MF, Xiaohong C (2011) Ginger rhizome as a potential source of milk coagulating cysteine protease. Phytochemistry 72:458–464

    Article  CAS  PubMed  Google Scholar 

  37. Gagaoua M, Hoggas N, Hafid K (2015) Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Int J Biol Macromol 73:245–252

    Article  CAS  PubMed  Google Scholar 

  38. Katsaros GI, Tavantzis G, Taoukis PS (2010) Production of novel dairy products using actinidin and high pressure as enzyme activity regulator. Innov Food Sci Emerg Technol 11:47–51

    Article  CAS  Google Scholar 

  39. Grozdanovic MM, Burazer L, Gavrovic-Jankulovic M (2013) Kiwifruit (Actinidia deliciosa) extract shows potential as a low-cost and efficient milk-clotting agent. Int Dairy J 32:46–52

    Article  CAS  Google Scholar 

  40. Puglisi I, Petrone G, Lo Piero AR (2014) A kiwi juice aqueous solution as coagulant of bovine milk and its potential in mozzarella cheese manufacture. Food Bioprod Process 92:67–72

    Article  CAS  Google Scholar 

  41. Zhang B, Sun Q, Liu HJ, Li SZ, Jiang ZQ (2017) Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT Food Sci Technol 78:1–7

    Article  CAS  Google Scholar 

  42. Uchikoba T, Kaneda M (1996) Milk-clotting activity of cucumisin, a plant serine protease from melon fruit. Appl Biochem Biotechnol 56:325–330

    Article  CAS  PubMed  Google Scholar 

  43. Yadav RP, Patel AK, Jagannadham MV (2011) Purification and biochemical characterization of a chymotrypsin-like serine protease from Euphorbia neriifolia Linn. Process Biochem 46:1654–1662

    Article  CAS  Google Scholar 

  44. Yadav RP, Patel AK, Jagannadham MV (2012) Neriifolin S, a dimeric serine protease from Euphorbia neriifolia Linn.: purification and biochemical characterisation. Food Chem 132:1296–1304

    Article  CAS  PubMed  Google Scholar 

  45. Ahmed IAM, Morishima I, Babiker EE, Mori N (2009) Characterisation of partially purified milk-clotting enzyme from Solanum dubium Fresen seeds. Food Chem 116:395–400

    Article  CAS  Google Scholar 

  46. Ahmed IAM, Morishima I, Babiker EE, Mori N (2009) Dubiumin, a chymotrypsin-like serine protease from the seeds of Solanum dubium Fresen. Phytochemistry 70:483–491

    Article  CAS  Google Scholar 

  47. Kumari M, Sharma A, Jagannadham MV (2010) Decolorization of crude latex by activated charcoal, purification and physico-chemical characterization of Religiosin, a milk-clotting serine protease from the latex of Ficus religiosa. J Agric Food Chem 58:8027–8034

    Article  CAS  PubMed  Google Scholar 

  48. Kumari M, Sharma A, Jagannadham MV (2012) Religiosin B, a milk-clotting serine protease from Ficus religiosa. Food Chem 131:1295–1303

    Article  CAS  Google Scholar 

  49. Sharma A, Kumari M, Jagannadham MV (2012) Religiosin C, a cucumisin-like serine protease from Ficus religiosa. Process Biochem 47:914–921

    Article  CAS  Google Scholar 

  50. Tripathi P, Tomar R, Jagannadham MV (2011) Purification and biochemical characterisation of a novel protease streblin. Food Chem 125:1005–1012

    Article  CAS  Google Scholar 

  51. Lo Piero AR, Puglisi I, Petrone G (2002) Characterization of “lettucine”, a serine-like protease from Lactuca sativa leaves, as a novel enzyme for milk clotting. J Agric Food Chem 50:2439–2443

    Article  CAS  PubMed  Google Scholar 

  52. Bruno MA, Lazza CM, Errasti ME, Lόpez LMI, Caffini NO, Pardo MF (2010) Milk clotting and proteolytic activity of an enzyme preparation from Bromelia hieronymi fruits. LWT Food Sci Technol 43:695–701

    Article  CAS  Google Scholar 

  53. Domingos A, Cardos PC, Xue ZT, Clemente A, Brodelius PE, Pais MS (2000) Purification, cloning and autoproteolytic processing of an aspartic proteinase from Centaurea calcitrapa. Eur J Biochem 267:6824–6831

    Article  CAS  PubMed  Google Scholar 

  54. Reis PM, Lourenço PL, Domingos A, Clemente AF, Pais MS, Malcata FX (2000) Applicability of extracts from Centaurea calcitrapa in ripening of bovine cheese. Int Dairy J 10:775–780

    Article  Google Scholar 

  55. Salvador SM, Novo C, Domingos A (2006) Evaluation of the presence of aspartic proteases from Centaurea calcitrapa during seed germination. Enzym Microb Technol 38:893–898

    Article  CAS  Google Scholar 

  56. Pezeshki A, Hesari J, Zonoz AA, Ghambarzadeh B (2011) Influence of Withania coagulans protease as a vegetable rennet on proteolysis of Iranian UF white cheese. J Agric Sci Technol 13:567–576

    CAS  Google Scholar 

  57. Salehi M, Aghamaali MR, Saajedi RH, Asghari SM, Jorjani E (2017) Purification and characterization of a milk-clotting aspartic protease from Withania coagulans fruit. Int J Biol Macromol 98:847–854

    Article  CAS  PubMed  Google Scholar 

  58. Vairo-Cavalli S, Claver S, Priolo N, Natalucci C (2005) Extraction and partial characterization of a coagulant preparation from Silybum marianum flowers. Its action on bovine caseinate. J Dairy Res 72:271–275

    Article  CAS  PubMed  Google Scholar 

  59. Vairo-Cavalli S, Silva SV, Cimino C, Malcata FX, Priolo N (2008) Hydrolysis of caprine and ovine milk proteins, brought about by aspartic peptidases from Silybum marianum flowers. Food Chem 106:997–1003

    Article  CAS  Google Scholar 

  60. Tamer MI (1993) Identification and partial purification of a novel milk-clotting enzyme from Onopordum turcicum. Biotechnol Lett 13:427–432

    Article  Google Scholar 

  61. Egito AS, Girardet JM, Laguna LE, Poirson C, Molle D, Miclo L, Humbert G, Gaillard JL (2007) Milkclotting activity of enzyme extracts from sunflower and albizia seeds and specific hydrolysis of bovine κ-casein. Int Dairy J 17:816–825

    Article  CAS  Google Scholar 

  62. Duarte AR, Duarte DMR, Moreira KA, Cavalcanti MTH, de Lima-Filho JL, Porto ALF (2009) Jacaratia corumbensis O. Kuntze a new vegetable source for milk-clotting enzymes. Braz Arch Biol Technol 52(1):1–9

    Article  CAS  Google Scholar 

  63. Pontual EV, Carvalho BEA, Bezerra RS, Coelho LCBB, Napoleao TH, Paiva PMG (2012) Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chem 135:1848–1854

    Article  CAS  PubMed  Google Scholar 

  64. Nestor GM, Rubi CGD, Hector JC (2012) Exploring the milk-clotting properties of a plant coagulant from the berries of S. elaeagnifoliun var. Cavanillies. J Food Sci 71:89–94

    Article  CAS  Google Scholar 

  65. Beka RG, Krier F, Botquin M, Guiama VD, Donn P, Libouga DG, Mbofung CM, Dimitrov K, Slomianny MC, Guillochon D, Vercaigne-Marko D (2014) Characterisation of a milk-clotting extract from Balanites aegyptiaca fruit pulp. Int Dairy J 34:25–31

    Article  CAS  Google Scholar 

  66. Bey N, Debbebi H, Abidi F, Marzouki MN, Salah AB (2018) The non-edible parts of fennel (Foeniculum vulgare) as a new milk-clotting protease source. Ind Crop Prod 112:181–187

    Article  CAS  Google Scholar 

  67. Toohey ES, Kerr MJ, van de Ven R, Hopkins DL (2011) The effect of a kiwi fruit based solution on meat traits in beef m. semimembranosus (topside). Meat Sci 88:468–471

    Article  CAS  PubMed  Google Scholar 

  68. Liu C, Xiong YL, Rentfrow GK (2011) Kiwifruit protease extract injection reduces toughness of pork loin muscle induced by freeze-thaw abuse. LWT-Food Sci Technol 44:2026–2031

    Article  CAS  Google Scholar 

  69. Ha M, Bekhit AEDA, Carne A, Hopkins DL (2012) Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chem 134:95–105

    Article  CAS  Google Scholar 

  70. Ha M, Bekhit AEDA, Carne A, Hopkins DL (2013) Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins. Food Chem 136:989–998

    Article  CAS  PubMed  Google Scholar 

  71. Nam SH, Kim YM, Walsh MK, Yim SH, Eun JB (2016) Functional characterization of purified pear protease and its proteolytic activities with casein and myofibrillar proteins. Food Sci Biotechnol 25(S):31–39

    Article  CAS  Google Scholar 

  72. Chaurasiya RS, Sakhare PZ, Bhaskar N, Hebbar HU (2015) Efficacy of reverse micellar extracted fruit bromelain in meat tenderization. J Food Sci Technol 52:870–880

    Google Scholar 

  73. Ramezani R, Aminlari M, Fallahi H (2003) Effect of chemically modified soy proteins and ficin-tenderized meat on the quality attributes of sausage. J Food Sci 68:85–88

    Article  CAS  Google Scholar 

  74. Akpan IP, Omojola AB (2015) Quality attributes of crude papain injected beef. J Meat Sci Technol 3:42–46

    Google Scholar 

  75. Abdel-Naeem HH, Mohamed HM (2016) Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain. Meat Sci 118:52–60

    Article  CAS  PubMed  Google Scholar 

  76. Barekat S, Soltanizadeh N (2017) Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innov Food Sci Emerg Technol 39:223–229

    Article  CAS  Google Scholar 

  77. Naveena BM, Mendiratta SK, Anjaneyulu ASR (2004) Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (ginger rhizome). Meat Sci 68:363–369

    Article  CAS  PubMed  Google Scholar 

  78. Rawdkuen S, Jaimakreu M, Benjakul S (2013) Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex. Food Chem 136:909–916

    Article  CAS  PubMed  Google Scholar 

  79. Choe IS, Park YJ, Ishioroshi M, Samejima K (1996) A new protease in Korean pears as meat tenderizer. Anim Sci Technol 67:43–46

    CAS  Google Scholar 

  80. Wang J, Liu H, Wang H, Cui M, Jin Q, Jin T, Cui F, Cui T, Liang C, Kim B, Li G (2016) Isolation and characterization of a protease from the Actinidia arguta fruit for improving meat tenderness. Food Sci Biotechnol 25(4):1059–1064

    Article  CAS  Google Scholar 

  81. Lee JS, Yoo MA, Koo SH, Baek HH, Lee HG (2008) Antioxidant and ACE inhibitory activities of soybean hydrolysates: effect of enzyme and degree of hydrolysis. Food Sci Biotechnol 17:873–877

    CAS  Google Scholar 

  82. Chen YC, Chang HS, Wang CT, Cheng FY (2009) Antioxidative activities of hydrolysates from duck egg white using enzymatic hydrolysis. Asian-Aust J Anim Sci 22:1587–1593

    Article  CAS  Google Scholar 

  83. Udenigw CC, Lin YS, Hou WC, Aluko RE (2009) Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J Funct Foods 1:199–207

    Article  Google Scholar 

  84. Chen C, Chi YJ (2012) Antioxidant, ACE inhibitory activities and functional properties of egg white protein hydrolysate. J Food Biochem 36:383–394

    Article  CAS  Google Scholar 

  85. Gu RZ, Liu WY, Lin F, Jin ZT, Chen L, Yi WX, Lu J, Cai MY (2012) Antioxidant and angiotensin I-converting enzyme inhibitory properties of oligopeptides derived from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle. Food Res Int 49:326–333

    Article  CAS  Google Scholar 

  86. Guo X, Zhang J, Ma Y, Tian S (2013) Optimization of limited hydrolysis of proteins in rice residue and characterization of the functional properties of the products. J Food Process Preserv 37:245–253

    Article  CAS  Google Scholar 

  87. Luo HY, Wang B, Li ZR, Chi CF, Zhanga QH, He GY (2013) Preparation and evaluation of antioxidant peptide from papain hydrolysate of Sphyrna lewini muscle protein. LWT-Food Sci Technol 51:281–288

    Article  CAS  Google Scholar 

  88. Margatan W, Ruud K, Wang Q, Markowski T, Ismail B (2013) Angiotensin converting enzyme inhibitory activity of soy protein subjected to selective hydrolysis and thermal processing. J Agric Food Chem 61:3460–3467

    Article  CAS  PubMed  Google Scholar 

  89. Lafarga T, Aluko RE, Rai DK, O'Connor P, Hayes M (2016) Identification of bioactive peptides from a papain hydrolysate of bovine serum albumin and assessment of an antihypertensive effect in spontaneously hypertensive rats. Food Res Int 81:91–99

    Article  CAS  Google Scholar 

  90. Zarei M, Ebrahimpour A, Abdul-Hamid A, Anwar F, Saari N (2012) Production of defatted palm kernel cake protein hydrolysate as a valuable source of natural antioxidants. Int J Mol Sci 13:8097–8111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zarei M, Ghanbari R, Tajabadi N, Abdul-Hamid A, Bakar FA, Saari N (2016) Generation, fractionation, and characterization of iron-chelating protein hydrolysate from palm kernel cake proteins. J Food Sci 81:C341–C347

    Article  CAS  PubMed  Google Scholar 

  92. Hayes M, Mora L, Hussey K, Aluko RE (2016) Boarfish protein recovery using the pH shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innov Food Sci Emerg Technol 37:253–260

    Article  CAS  Google Scholar 

  93. Gajanan PG, Elavarasan K, Shamasundar BA (2016) Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environ Sci Pollut Res 23:24901–24911

    Article  CAS  Google Scholar 

  94. Bah CSF, Bekhit AEDA, Carne A, McConnell MA (2015) Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations. Food Chem 176:54–63

    Article  CAS  PubMed  Google Scholar 

  95. Bah CSF, Carne A, McConnell MA, Mros S, Bekhit AEDA (2016a) Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chem 202:458–466

    Article  CAS  PubMed  Google Scholar 

  96. Bah CSF, Bekhit AEDA, McConnell MA, Carne A (2016b) Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases. Food Chem 213:98–107

    Article  CAS  PubMed  Google Scholar 

  97. Abdel-Hamid M, Otte J, De Gobba C, Osman A, Hamad E (2017) Angiotensin I converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int Dairy J 66:91–98

    Article  CAS  Google Scholar 

  98. Liu Z, Dong S, Xu J, Zeng M, Song H, Zhao Y (2008) Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 19:231–235

    Article  CAS  Google Scholar 

  99. Wang B, Li ZR, Chi CF, Zhang QH, Luo HY (2012) Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides 36:240–250

    Article  CAS  PubMed  Google Scholar 

  100. Bordbar S, Anwar F, Ebrahimpour A, Saari N, Hamid AA, Manap MYA (2013) The improvement of the endogenous antioxidant property of stone fish (Actinopyga lecanora) tissue using enzymatic proteolysis. BioMed Res Int. https://doi.org/10.1155/2013/849529

  101. Elevarasan K, Kumar VN, Shamasundar BA (2014) Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (Catla catla) as influenced by the nature of enzyme. J Food Process Preserv 38:1207–1214

    Article  CAS  Google Scholar 

  102. Medeiros V, Rainha N, Paiva L, Lima E, Baptista J (2014) Bovine milk formula based on partial hydrolysis of caseins by bromelain enzyme: better digestibility and angiotensin-converting enzyme-inhibitory properties. Int J Food Prop 17:806–817

    Article  CAS  Google Scholar 

  103. Teh SS, Bekhit AEDA, Carne A, Birch J (2016) Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, pro-G, actinidin and zingibain. Food Chem 203:199–206

    Article  CAS  PubMed  Google Scholar 

  104. Rocha GF, Kise F, Rosso AM, Parisi MG (2017) Potential antioxidant peptides produced from whey hydrolysis with an immobilized aspartic protease from Salpichroa origanifolia fruits. Food Chem 237:350–355

    Article  CAS  PubMed  Google Scholar 

  105. Corrons MA, Bertucci JI, Liggieri CS, Lopez LMI, Bruno MA (2012) Milk clotting activity and production of bioactive peptides from whey using Maclura pomifera proteases. LWT-Food Sci Technol 47:103–109

    Article  CAS  Google Scholar 

  106. Corrons MA, Liggieri CS, Trejo SA, Bruno MA (2017) ACE-inhibitory peptides from bovine caseins released with peptidases from Maclura pomifera latex. Food Res Int 93:8–15

    Article  CAS  PubMed  Google Scholar 

  107. Bertucci JA, Liggieri CS, Colombo ML, Vairo-Cavalli SE, Bruno MA (2015) Application of peptidases from Maclura pomifera fruit for the production of active biopeptides from whey protein. LWT-Food Sci Technol 64:157–163

    Article  CAS  Google Scholar 

  108. Tavares T, Montiero KM, Possenti A, Pintado ME, Carvalho JE, Malcata FX (2011) Antiulcerogenic activity of peptide concentrates obtained from hydrolysis of whey proteins by proteases from Cynara cardunculus. Int Dairy J 21:934–939

    Article  CAS  Google Scholar 

  109. Tavares TG, Malcata FX (2012) The Portuguese paradox: why do some inhabitants of Portugal appear to live so long when their diet is based on whey cheese? Food Chem 131:727–729

    Article  CAS  Google Scholar 

  110. Tavares T, Spindola H, Longato G, Pintado ME, Carvalho JE, Malcata FX (2013) Antinociceptive and anti-inflammatory effects of novel dietary protein hydrolysate produced from whey by proteases of Cynara cardunculus. Int Dairy J 32:156–162

    Article  CAS  Google Scholar 

  111. Silva SV, Pihlanto A, Malcata FX (2006) Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus. J Dairy Sci 89:3336–3344

    Article  CAS  PubMed  Google Scholar 

  112. Tanabe S, Arai S, Watanabe M (1996) Modification of wheat flour with bromelain and baking hypoallergenic bread with added ingredients. Biosci Biotechnol Biochem 60(8):1269–1272

    Article  CAS  PubMed  Google Scholar 

  113. Chen JS, Tian JC, Deng ZY, Zhang YX, Feng SL, Yan ZC, Zhang XY, Yuan Q (2012) Effects of papain hydrolysis on the pasting properties of wheat flour. J Integr Agric 11(12):1948–1957

    Article  CAS  Google Scholar 

  114. Yang T, Bai Y, Wu F, Yang N, Zhang Y, Bashari M, Jin Z, Xu X (2014) Combined effects of glucose oxidase, papain and xylanase on browning inhibition and characteristics of fresh whole wheat dough. J Cereal Sci 60:249–254

    Article  CAS  Google Scholar 

  115. Hatta E, Matsumoto K, Honda Y (2015) Bacillolysin, papain, and subtilisin improve the quality of gluten-free rice bread. J Cereal Sci 61:41–47

    Article  CAS  Google Scholar 

  116. Li Y, Yu J, Goktepe I, Ahmedna M (2016) The potential of papain and alcalase enzymes and process optimizations to reduce allergenic gliadins in wheat flour. Food Chem 196:1338–1345

    Article  CAS  PubMed  Google Scholar 

  117. Buddrick O, Cornell HJ, Small DM (2015) Reduction of toxic gliadin content of wholegrain bread by the enzyme caricain. Food Chem 170:343–347

    Article  CAS  PubMed  Google Scholar 

  118. Sun J, Wang M, Cao J, Zhao Y, Jiang W (2010) Characterization of three novel alkaline serine proteases from tomato (Lycopersicum esculentum mill.) fruit and their potential application. J Food Biochem 34:1014–1031

    Article  CAS  Google Scholar 

  119. Li Z, Scott K, Hemar Y, Zhang H, Otter D (2018) Purification and characterisation of a protease (tamarillin) from tamarillo fruit. Food Chem. https://doi.org/10.1016/j.foodchem.2018.02.091

  120. DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–453

    Article  CAS  PubMed  Google Scholar 

  121. Shah MA, Mir SA, Paray MA (2014) Plant proteases as milk-clotting enzymes in cheesemaking: a review. Dairy Sci Technol 94:5–16

    Article  CAS  Google Scholar 

  122. Tamer MI, Mavituna F (1996) Protease from callus and cell suspension cultures of Onopordum turcicum (Compositae). Biotehcnol Lett 18:361–366

    Article  CAS  Google Scholar 

  123. Perez A, Laudat T, Mora M, Carvajal C, Aragon C, Gonzalez J, Escalona M, Daquinta M, Trujillo R, Hernandez M, Lorenzo JC (2013) Micropropagation of Hohenbergia penduliflora (A. Rich.) Mez. for sustainable production of plant proteases. Acta Physiol Plant 35:2525–2537

    Article  CAS  Google Scholar 

  124. Tamer MI, Mavituna F (1997) Protease from freely suspended and immobilized Mirabilis jalapa. Process Biochem 32:195–200

    Article  CAS  Google Scholar 

  125. Raposo S, Domingos A (2008) Purification and characterization milk-clotting aspartic proteases from Centaurea calcitrapa cell suspension cultures. Process Biochem 43:139–144

    Article  CAS  Google Scholar 

  126. Cimino C, Cavalli SV, Spina F, Natalucci C, Priolo N (2006) Callus culture for biomass production of milk thistle as a potential source of milk-clotting peptidases. Electron J Biotechnol 9:237–240

    Article  CAS  Google Scholar 

  127. Oliveira A, Perira C, Soares da Costa D, Teixeira J, Fidalgo F, Pereira S, Pissarra J (2010) Characterization of aspartic proteinases in C. cardunculus L. callus tissue for its prospective transformation. Plant Sci 178:140–146

    Article  CAS  Google Scholar 

  128. Feijoo-Siota L, Rama JLR, Sanchez-Perez A, Villa TG (2018) Expression, activation and processing of a novel plant milk-clotting aspartic protease in Pichia pastoris. J Biotechnol 268:28–39

    Article  CAS  PubMed  Google Scholar 

  129. Roseiro LB, Barbosa M, Ames JM, Wilbey RA (2003) Cheesemaking with vegetable coagulants-the use of Cynara L. for the production of ovine cheeses. Int J Dairy Technol 56:76–85

    Article  Google Scholar 

  130. Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323

    Article  CAS  PubMed  Google Scholar 

  131. Di Bernardini R, Harnedy P, Bolton D, Kerry J, O’Neill E, Mullen AM, Hayes M (2011) Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem 124(4):1296–1307

    Article  CAS  Google Scholar 

  132. Maestri E, Marmiroli M, Marmiroli N (2016) Bioactive peptides in plant-derived foodstuffs. J Proteome 147:140–155

    Article  CAS  Google Scholar 

  133. Lafarga T, Hayes M (2014) Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Sci 98:227–239

    Article  CAS  PubMed  Google Scholar 

  134. Udenigwe CC, Aluko RE (2012) Food protein-derived bioactive peptides: production, processing, and potential health benefits. J Food Sci 71:R11–R24

    Article  CAS  Google Scholar 

  135. Arruda MS, Silva FO, Egito AS, Silva TMS, Lima-Filho JL, Porto ALF, Moreira KA (2012) New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis. LWT-Food Sci Technol 49:73–79

    Article  CAS  Google Scholar 

  136. Dabrowska A, Szoltysik M, Babij K, Pokora M, Zambrowicz A, Chrzanowska J (2013) Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein. Acta Biochim Pol 60:117–122

    CAS  PubMed  Google Scholar 

  137. Memarpoor-Yazdi M, Asoodeh A, Chamania J (2012) A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J Funct Foods 4:278–286

    Article  CAS  Google Scholar 

  138. Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Yoshida M (2012) Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high cholesterol diets. J Med Food 15:299–306

    Article  CAS  PubMed  Google Scholar 

  139. Memarpoor-Yazdi MA, Ahmad A, Chamani J (2012) Structure and ACE-inhibitory activity of peptides derived from hen egg white lysozyme. Int J Pept Res Ther 18:353–360

    Article  CAS  Google Scholar 

  140. Mazorra-Manzano MA, Ramirez-Suarez JC, Yada RY (2017) Plant proteases for bioactive peptides release: a review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2017.1308312

  141. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  142. Mora L, Sentandreu MA, Koistinen KM, Fraser PD, Toldra F, Bramley PM (2009) Naturally generated small peptides derived from myofibrillar proteins in serrano dry-cured ham. J Agric Food Chem 57(8):3228–3234

    Article  CAS  PubMed  Google Scholar 

  143. Woods FC, Bruinsma BL, Kinsella JE (1980) Note on the effects of protease from Saccharomyces-carlsbergensis on dough strength. Cereal Chem 57:290–293

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ahmad Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shah, M.A., Mir, S.A. (2018). Plant Proteases in Food Processing. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics