Skip to main content

Edible Insects as Source of Proteins

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The potential of insects as a source of protein for future food and feed is the object of numerous studies. The nutritional value of edible insects is well established, and other aspects of consumption thereof are investigated. In this chapter, we aim to summarize the main features of insects as food. We briefly describe the history of the usage of insects as food for humans and refer to the current acceptance of insects by Europeans based on conducted surveys. We characterize the most common insect species with the biggest potential to be used as food and feed in the EU according to EFSA. We describe the nutritional value of insects and the possibility of application thereof in the food and feed industry, keeping in mind the safety of consumption. In addition, the ecological aspect of insect breeding is discussed. A review of the growing edible insect market in Europe and the USA is also provided. Moreover, we analyze the current legal status of insect intake in Europe. We aim to make this chapter a current conclusion about the consumption of insects.

This is a preview of subscription content, log in via an institution.

References

  1. Evans J, Alemu MH, Flore R et al (2015) ‘Entomophagy’: an evolving terminology in need of review. J Insects Food Feed 1(4):293–305

    Article  Google Scholar 

  2. Verbeke W, Spranghers T, De Clercq P, De Smet S, Sas B, Eeckhout M (2015) Insects in animal feed: acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim Feed Sci Technol 204:72–87

    Article  Google Scholar 

  3. Yi L, Lakemond CM, Sagis LM, Eisner-Schadler V, van Huis A, van Boekel MA (2013) Extraction and characterisation of protein fractions from five insect species. Food Chem 141(4):3341–3348

    Article  CAS  Google Scholar 

  4. Bußler S, Rumpold BA, Fröhling A, Jander E, Rawel HM, Schlüter OK (2016) Cold atmospheric pressure plasma processing of insect flour from Tenebrio molitor: impact on microbial load and quality attributes in comparison to dry heat treatment. Innov Food Sci Emerg 36:277–286

    Article  CAS  Google Scholar 

  5. Kim HW, Setyabrata D, Lee YJ, Jones OG, Kim YHB (2016) Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov Food Sci Emerg 38:116–123

    Article  CAS  Google Scholar 

  6. Raksakantong P, Meeso N, Kubola J, Siriamornpun S (2010) Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res Int 43(1):350–355

    Article  CAS  Google Scholar 

  7. Kaya M, Erdogan S, Mol A, Baran T (2015) Comparison of chitin structures isolated from seven Orthoptera species. Int J Biol Macromol 72:797–805

    Article  CAS  Google Scholar 

  8. Ramos-Elorduy J (2009) Anthropo-entomophagy: cultures, evolution and sustainability. Entomol Res 39:271–288

    Article  Google Scholar 

  9. Shelomi M (2015) Why we still don’t eat insects: assessing entomophagy promotion through a diffusion of innovations framework. Trends Food Sci Technol 45(2):311–318

    Article  CAS  Google Scholar 

  10. Ramos-Elorduy J, Moreno JMP, Camacho VHM (2012) Could grasshoppers be a nutritive meal? Food Nutr Sci 3:164–175

    Article  CAS  Google Scholar 

  11. Tzompa-Sosa DA, Yi L, van Valenberg HJ, van Boekel MA, Lakemond CM (2014) Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res Int 62:1087–1094

    Article  CAS  Google Scholar 

  12. Zielińska E, Baraniak B, Karaś M (2017) Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Forum Nutr 9(9):970

    Google Scholar 

  13. Zielińska E, Karaś M, Jakubczyk A (2017) Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int J Food Sci Technol 52:306–312

    Article  CAS  Google Scholar 

  14. Zielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A (2015) Selected species of edible insects as a source of nutrient composition. Food Res Int 77:460–466

    Article  CAS  Google Scholar 

  15. Finke MD (2012) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:269–285

    Article  CAS  Google Scholar 

  16. Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 5(12):e14445

    Article  CAS  Google Scholar 

  17. van Huis A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58:563–583

    Article  CAS  Google Scholar 

  18. van Huis A, van Itterbeeck J, Klunder H et al (2013) Edible insects: future prospects for food and feed security. FAO, Rome

    Google Scholar 

  19. DeFoliart G (1999) Insects as food: why the Western attitude is important. Annu Rev Entomol 44:21–50

    Article  CAS  Google Scholar 

  20. van Huis A (2003) Insects as food in sub-Saharan Africa. Insect Scis Appl 23:63–85

    Google Scholar 

  21. Thompson DW (1907) The history of animals – Aristotle. John Bell, London

    Google Scholar 

  22. Anonymous (2001) The holy bible. English standard version. Crossway Bibles, Wheaton

    Google Scholar 

  23. Bodenheimer FS (1951) Insects as human food; a chapter of the ecology of man. Dr. W. Junk Publishers, Hague

    Book  Google Scholar 

  24. Holt V (1885) Why not eat insects? Pryor Publications, Whitstable

    Google Scholar 

  25. Gulick CB (1927) Athenaeus: the Deipnosophists, vol 1. Loeb Classical Library, Harvard University Press, UK

    Google Scholar 

  26. Amar Z (2003) The eating of locusts in Jewish tradition after the Talmudic period. Torah U Madda J 11:186–202

    Google Scholar 

  27. El-Mallakh OS, El-Mallakh RS (1994) Insects of the Qur’an (Koran). Am Entomol 40:82–84

    Article  Google Scholar 

  28. Shizhen L (1596) The compendium of Materia Medica. Shunyo-Do Shoten, Tokyo

    Google Scholar 

  29. Seabrooksa L, Hu L (2017) Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B 7(4):409–426

    Article  Google Scholar 

  30. Hu P, Zha LS (2009) Records of edible insects from China. Agr Sci Tech 10:114–118

    Google Scholar 

  31. DeFoliart G (1992) Insects as human food: gene DeFoliart discusses some nutritional and economic aspects. Crop Prot 11(95):395–399

    Article  Google Scholar 

  32. Menzel P, D’Aluisio F (1998) Man eating bugs: the art and science of eating insects. Random House, New York

    Google Scholar 

  33. van Huis A, van Gurp H, Dicke M (2014) The insect cookbook: food for a sustainable planet. Columbia University Press, New York

    Book  Google Scholar 

  34. Fessler DMT, Navarette CD (2003) Meat is good to taboo: dietary proscriptions as a product of the interaction of psychological mechanisms and social processes. J Cogn Cult 3(1):1–40

    Article  Google Scholar 

  35. Looy H, Dunkel FV, Wood JR (2014) How then shall we eat? Insect-eating attitudes and sustainable foodways. Agr Human Val 31(1):131–141

    Article  Google Scholar 

  36. Schlup Y, Brunner T (2017) Prospects for insects as food in Switzerland: a tobit regression. Food Qual Pref 64:37–46

    Article  Google Scholar 

  37. Marberg A, van Kranenburg H, Korzilius H (2017) The big bug: the legitimation of the edible insect sector in the Netherlands. Food Policy 71:111–123

    Article  Google Scholar 

  38. Lensvelt E, Steenbekkers L (2014) Exploring consumer acceptance of entomophagy: a survey and experiment in Australia and the Netherlands. Ecol Food Nutr 53(5):543–561

    Article  Google Scholar 

  39. Caparros Megido R, Sablon L, Geuens M et al (2014) Edible insects acceptance by Belgian consumers: promising attitude for entomophagy development. J Sens Stud 29(1):14–20

    Article  Google Scholar 

  40. Halloran A, Muenke C, Vantomme P, van Huis A (2014) Insects in the human food chain: global status and opportunities. Food Chain 4(2):103–119

    Article  Google Scholar 

  41. Verkerk MC, Tramper J, van Trijp JCM, Martens DE (2007) Insect cells for human food. Biotechnol Adv 25(2):198–202

    Article  CAS  Google Scholar 

  42. Schösler H, de Boer J, Boersema JJ (2012) Can we cut out the meat of the dish? Constructing consumer-oriented pathways towards meat substitution. Appetite 58(1):39–47

    Article  Google Scholar 

  43. Vanhonacker F, van Loo EJ, Gellynck X, Verbeke W (2013) Flemish consumer attitudes towards more sustainable food choices. Appetite 62:7–16

    Article  Google Scholar 

  44. Vogel G (2010) For more protein, filet of cricket. Science 327:811

    Article  CAS  Google Scholar 

  45. Verbeke W (2015) Profiling consumers who are ready to adopt insects as a meat substitute in a western society. Food Qual Pref 39:147–155

    Article  Google Scholar 

  46. Hartmann C, Shi J, Giusto A, Siegrist M (2015) The psychology of eating insects: a cross-cultural comparison between Germany and China. Food Qual Pref 44:148–156

    Article  Google Scholar 

  47. Tan HSG, van den Berg E, Stieger M (2016) The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Qual Pref 52:222–231

    Article  Google Scholar 

  48. Shan H, Tan G, Fischer ARH et al (2015) Insects as food: exploring cultural exposure and individual experience as determinants of acceptance. Food Qual Pref 42:78–89

    Article  Google Scholar 

  49. Sogari G, Menozzi D, Mora C (2017) Exploring young foodies’ knowledge and attitude regarding entomophagy: a qualitative study in Italy. Int J Gastr Food Sci 7:16–19

    Article  Google Scholar 

  50. Gere A, Székely G, Kovács S et al (2017) Readiness to adopt insects in Hungary: a case study. Food Qual Pref 59:81–86

    Article  Google Scholar 

  51. Verneau F, La Barbera F, Kolle S et al (2016) The effect of communication and implicit associations on consuming insects: an experiment in Denmark and Italy. Appetite 106:30–36

    Article  Google Scholar 

  52. Tan HSG, Tibboel CJ, Stieger M (2017) Why do unusual novel foods like insects lack sensory appeal? Investigating the underlying sensory perceptions. Food Qual Pref 60:48–58

    Article  Google Scholar 

  53. Looy H, Wood JR (2006) Attitudes toward invertebrates: are educational “bug banquets” effective? J Environ Educ 37(2):37–48

    Article  Google Scholar 

  54. Hartmann C, Siegrist M (2016) Becoming an insectivore: results of an experiment. Food Qual Pref 51:118e122

    Article  Google Scholar 

  55. Online Etymological Dictionary. Available at http://www.etymonline.com/word/insect. Accessed 1 Oct 2017

  56. Delong DM (1960) Man in a world of insects. Ohio J Sci 60(4):193–206

    Google Scholar 

  57. Dossey AT (2010) Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27:1737–1757

    Article  CAS  Google Scholar 

  58. Jongenema Y (2017) List of edible insects of the world. Wageningen University, Wageningen. http://www.wur.nl/en/Expertise-Services/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm. Accessed Oct 2015

  59. DeFoliart GR (2003) Food, insects as. In: Resh VH, Cardi RT (eds) Encyclopedia of insects. Academic, Cambridge, UK

    Google Scholar 

  60. EFSA Scientific Committee (2015) Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J 13(10):4257

    Article  CAS  Google Scholar 

  61. Shockley M, Dossey AT (2014) Insects for human consumption. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms. Academic, Cambridge, UK

    Google Scholar 

  62. Newton L, Sheppard C, Watson DW, Burtle G (2005) Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. North Carolina State University, North Carolina

    Google Scholar 

  63. Józefiak D, Józefiak A, Kierończyk B, Rawski M, Świątkiewicz S, Długosz J, Engberg RM (2016) Insects–a natural nutrient source for poultry–a review. Ann Anim Sci 16(2):297–313

    Article  CAS  Google Scholar 

  64. Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H (2017) Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 476:79–85

    Article  Google Scholar 

  65. De Marco M, Martínez S, Hernandez F et al (2015) Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol 209:211–218

    Article  CAS  Google Scholar 

  66. Salomone R, Saija G, Mondello G, Giannetto A, Fasulo S, Savastano D (2017) Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. J Clean Prod 140:890–905

    Article  Google Scholar 

  67. Diener S, Zurbrügg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res 27(6):603–610

    Article  CAS  Google Scholar 

  68. Finke MD (2002) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:269–285

    Article  CAS  Google Scholar 

  69. Li L, Xie B, Dong C, Hu D et al (2015) Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the “Lunar Palace 1” during a 105-day multi-crew closed integrative BLSS experiment. Life Sci Space Res 7:9–14

    Article  Google Scholar 

  70. Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57(5):802–823

    Article  CAS  Google Scholar 

  71. https://inhabitat.com/livin-farms-makes-growing-sustainable-and-healthy-protein-as-easy-as-compost/livin-farms-edible-insects-2/. Accessed 10 Oct 2017

  72. Jia J, Wu Q, Yan H, Gui Z (2015) Purification and molecular docking study of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from alcalase hydrolysate of ultrasonic-pretreated silkworm pupa (Bombyx mori) protein. Process Biochem 50(5):876–883

    Article  CAS  Google Scholar 

  73. Wang W, Shen S, Chen Q et al (2008) Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin I-converting enzyme inhibitory peptides (ACEIP). Curr Pharm Biotechnol 9(4):307–314

    Article  CAS  Google Scholar 

  74. Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23(4):329–344

    Article  CAS  Google Scholar 

  75. Cytryńska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T (2007) Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28(3):533–546

    Article  CAS  Google Scholar 

  76. Ponnuvel KM, Koundinya PR, Sinha RK, Kamble CK (2007) Immune mechanism in Bombyx mori L. against microbial pathogens. Indian Silk 46:9–11

    Google Scholar 

  77. Mak P, Zdybicka-Barabas A, Cytryńska M (2010) A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol 34(10):1129–1136

    Article  CAS  Google Scholar 

  78. http://entnemdept.ufl.edu/creatures/misc/crickets/gsigilla.html. Accessed 1 Oct 2017

  79. https://inhabitat.com/mansour-ourasanah-designs-a-vessel-for-farming-edible-insects-at-home/. Accessed 10 Oct 2017

  80. Payne CL, Scarborough P, Rayner M, Nonaka K (2016) A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci Technol 47:69–77

    Article  CAS  Google Scholar 

  81. Jonas-Levi A, Martinez JJI (2017) The high level of protein content reported in insects for food and feed is overestimated. J Food Compost Anal 62:184–188

    Article  CAS  Google Scholar 

  82. Xiaoming C, Ying F, Hong Z et al (2010) Review of the nuritive value of edible insects. In: Durst PB, Johnson DV, Leslie RL, Shono K (eds) Forest insects as food: humans bite back, proceedings of a workshop on Asia-Pacific resources and their potential for development. FAO, Bangkok

    Google Scholar 

  83. Nowak V, Persijn D, Rittenschober D, Charrondiere UR (2016) Review of food composition data for edible insects. Food Chem 193:39–46

    Article  CAS  Google Scholar 

  84. Rothman JM, Raubenheimer D, Bryer MA, Takahashi M, Gilbert CC (2014) Nutritional contributions of insects to primate diets: implications for primate evolution. J Hum Evol 71:59–69

    Article  Google Scholar 

  85. Anankware PJ, Fening KO, Osekre E, Obeng-Ofori D (2015) Insects as food and feed: a review. Int J Agric Res Rev 3(1):143–151

    Google Scholar 

  86. Finke MD, Oonincx DGAB (2014) Insects as food for insectivores. In: Morales-Ramos J, Rojas G, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier, New York

    Google Scholar 

  87. Ramos-Elorduy J, Moreno JMP, Prado EE et al (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Compost Anal 10:142–157

    Article  CAS  Google Scholar 

  88. Ramos-Elorduy J, Pino MJM, Correa SC (1998) Edible insects of the state of Mexico and determination of their nutritive values. An Inst Biol Univ Nac Auton Mex Ser Zool 69:65–104

    Google Scholar 

  89. Williams JP, Williams JR, Kirabo A et al (2016) Nutrient content and health benefits of insects. In: Dossey AT, Morales-Ramos JA, Guadalupe Rojas M (eds) Insects as sustainable food ingredients: production, processing and food applications. Academic, Cambridge, UK

    Google Scholar 

  90. van Broekhoven S, Oonincx DGAB, van Huis A, van Loon JJ (2015) Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol 73:1–10

    Article  CAS  Google Scholar 

  91. Bednářová M, Borkovcová M, Mlček J, Rop O, Zeman L (2013) Edible insects-species suitable for entomophagy under condition of Czech Republic. Acta Univ Agric Silvic Mendel Brun 61(3):587–593

    Article  Google Scholar 

  92. Adámková A, Kouřimská L, Borkovcová M et al (2016) Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo 10(1):663–671

    Article  Google Scholar 

  93. USDA National Nutrient Database. http://www.nal.usda.gov/fnic/foodcomp/search/. Accessed 5 Oct 2017

  94. Ofuya ZM, Akhidue V (2005) The role of pulses in human nutrition: a review. J Appl Sci Environ Manag 9(3):99–104

    Google Scholar 

  95. Adámková A, Mlček J, Kouřimská L et al (2017) Nutritional potential of selected insect species reared on the island of sumatra. Int J Environ Res Public Health 14(5):521

    Article  Google Scholar 

  96. Mota C, Santos M, Mauro R et al (2016) Protein content and amino acids profile of pseudocereals. Food Chem 193:55–61

    Article  CAS  Google Scholar 

  97. Finke MD, Defoliart G, Benevenga NJ (1989) Use of a four parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J Nutr 119:864–871

    Article  CAS  Google Scholar 

  98. Day L (2013) Proteins from land plants–potential resources for human nutrition and food security. Trends Food Sci Tech 32(1):25–42

    Article  CAS  Google Scholar 

  99. Jansen GR (1968) Amino-acid supple mentation and the world food problem. In evaluation of novel protein products. In: Bender AE, Kihlberg R, Löfkvist B, Munck L (eds) Evaluation of novel protein products. Pergamon Press, Stockholm

    Google Scholar 

  100. Kamau EH, Serrem CA, Wamunga FW (2017) Rat bioassay for evaluation of protein quality of soy-fortified complementary foods. J Food Res 6(6):35

    Article  Google Scholar 

  101. Bednářová M, Borkovcová M, Komprda T (2014) Purine derivate content and amino acid profile in larval stages of three edible insects. J Sci Food Agr 94(1):71–76

    Article  CAS  Google Scholar 

  102. Ghosh S, Lee SM, Jung C, Meyer-Rochow VB (2017) Nutritional composition of five commercial edible insects in South Korea. J Asia Pac Entomol 20(2):686–694

    Article  Google Scholar 

  103. Mba ARF, Kansci G, Viau M, Hafnaoui N, Meynier A, Demmano G, Genot C (2017) Lipid and amino acid profiles support the potential of Rhynchophorus phoenicis larvae for human nutrition. J Food Compos Anal 60:64–73

    Article  CAS  Google Scholar 

  104. Bukkens GF (2005) Insects in the human diet: nutritional aspects. In: Paoletti MG (ed) Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Taylor & Francis, Oxford

    Google Scholar 

  105. Kouřimská L, Adámková A (2016) Nutritional and sensory quality of edible insects. NFS J 4:22–26

    Article  Google Scholar 

  106. http://who.int/nutrition/topics/FFA_interim_recommendations/en/. Accessed 27 Sept 2017

  107. De Foliart GR (1991) Insect fatty acids: similar to those or poultry and fish in their degree of unsaturation but higher in the polyunsaturates. Food Insects Newsl 4:1–4

    Google Scholar 

  108. Komprda T, Zorníková G, Rozíková V, Borkovcová M, Przywarová A (2013) The effect of dietary Salvia hispanica seed on the content of n-3 long-chain polyunsaturated fatty acids in tissues of selected animal species, including edible insects. J Food Compos Anal 32(1):36–43

    Article  CAS  Google Scholar 

  109. Paul D, Dey S (2014) Essential amino acids, lipid profile and fat-soluble vitamins of the edible silkworm Bombyx mori (Lepidoptera: Bombycidae). Int J Trop Insect Sci 34:239–247

    Article  Google Scholar 

  110. Ravzanaadii N, Kim SH, Choi WH et al (2012) Nutritional value of mealworm, Tenebrio molitor as food source. Int J Indust Entomol 25(1):93–98

    Article  Google Scholar 

  111. Finke MD (2007) Estimate of chitin in raw whole insects. Zoo Biol 26(2):105–115

    Article  CAS  Google Scholar 

  112. Lease HM, Wolf BO (2010) Exoskeletal chitin scales isometrically with body size in terrestrial insects. J Morphol 271(6):759–768

    Google Scholar 

  113. Finke MD (2015) Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol 34(6):554–564

    Article  CAS  Google Scholar 

  114. Kramer KJ, Hopkins TL, Schaefer J (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25(10):1067–1080

    Article  CAS  Google Scholar 

  115. Paoletti MG, Norberto L, Damini R, Musumeci S (2007) Human gastric juice contains chitinase that can degrade chitin. Ann Nutr Metab 51:244–251

    Article  CAS  Google Scholar 

  116. Mlcek J, Borkovcova M, Rop O, Bednarova M (2014) Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine. J Cent Eur Agric 15(4):225–237

    Article  Google Scholar 

  117. Chen X, Feng Y, Chen Z (2009) Common edible insects and their utilization in China. Entomol Res 39:299–303

    Article  Google Scholar 

  118. Goodman WG (1989) Chitin: a magic bullet? Food Insects Newsl 3:6–7

    Google Scholar 

  119. Belluco S, Losasso C, Maggioletti M (2013) Edible insects in a food safety and nutritional perspective: a critical review. Compr Rev Food Sci Food Saf 12:296–313

    Article  CAS  Google Scholar 

  120. Bauserman M, Lokangaka A, Gado J (2015) A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia. Public Health Nutr 18:1785–1792

    Article  Google Scholar 

  121. Christensen DL, Orech FO, Mungai MN et al (2006) Entomophagy among the Luo of Kenya: a potential mineral source? Int J Food Sci Nutr 57:198–203

    Article  CAS  Google Scholar 

  122. van Huis A (2017) New sources of animal proteins: edible insects. In: Purslow PP (ed) New aspects of meat quality: from genes to ethics. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  123. La’Toya VL, Toddes BD, Wyre NR (2017) Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae). Am J Vet Res 78(2):178–185

    Article  Google Scholar 

  124. Oonincx DGAB, Dierenfeld ES (2012) An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol 31(1):40–54

    Article  CAS  Google Scholar 

  125. Ramos-Elorduy J (2005) Insects: a hopeful food source. In: Paoletti MG (ed) Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Taylor & Francis, Oxford

    Google Scholar 

  126. Wakayama EJ, Dillwith JW, Howard RW et al (1984) Vitamin B12 levels in selected insects. Insect Biochem 14(2):175–179

    Article  CAS  Google Scholar 

  127. Oonincx DGAB, van der Poel AFB (2011) Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol 30(1):9–16

    CAS  Google Scholar 

  128. Tong L, Yu X, Liu H (2011) Insect food for astronauts: gas exchange in silkworms fed on mulberry and lettuce and the nutritional value of these insects for human consumption during deep space flights. Bull Entomol Res 101:613–622

    Article  CAS  Google Scholar 

  129. Ratcliffe N, Azambuja P, Mello CB (2014) Recent advances in developing insect natural products as potential modern day medicines. J Evid Based Complement Altern Med 2014:904958

    Google Scholar 

  130. Musundire R, Zvidzai JC, Chidewe C (2014) Bio-active compounds composition in edible stinkbugs consumed in south-eastern districts of Zimbabwe. Int J Biol 6(3):36–45

    Article  CAS  Google Scholar 

  131. Nongonierma AB, FitzGerald RJ (2017) Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review. Innov Food Sci Emerg Technol 43:239–252

    Article  CAS  Google Scholar 

  132. Vercruysse L, Smagghe G, Beckers T, van Camp J (2009) Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodopter littoralis. Food Chem 114:38–43

    Article  CAS  Google Scholar 

  133. Vercruysse L, Smagghe G, Herregods G, van Camp J (2005) ACE inhibitory activity in enzymatic hydrolysates of insect protein. J Agr Food Chem 53:5207–5211

    Article  CAS  Google Scholar 

  134. Vercruysse L, Smagghe G, Matsui T, van Camp J (2008) Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodoptera littoralis. Process Biochem 43:900–904

    Article  CAS  Google Scholar 

  135. Dai C, Ma H, Luo L, Yin X (2013) Angiotensin I-converting enzyme (ACE) inhibitor peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur Food Res Tech 236:681–689

    Article  CAS  Google Scholar 

  136. Wang W, Wang N, Zhang Y (2014) Antihypertensive properties on spontaneously hypertensive rats of peptide hydrolysates from silkworm pupae protein. Food Nutr Sci 5:1202–1211

    Article  CAS  Google Scholar 

  137. Wang W, Wang N, Liu C et al (2017) Effect of silkworm pupae peptide on the fermentation and quality of yogurt. J Food Proc Preserv 41:e12893

    Article  CAS  Google Scholar 

  138. Wang W, Wang N, Zhou Y et al (2011) Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme. Eur Food Res Technol 232:29–38

    Article  CAS  Google Scholar 

  139. Li X, Li Y, Huang X et al (2014) Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa. Food Sci Biotech 23:1017–1023

    Article  CAS  Google Scholar 

  140. Jia J, Wu Q, Yan H, Gui Z (2015) Purification and molecular docking study of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from alcalase hydrolysate of ultrasonic-pretreated silkworm pupa (Bombyx mori) protein. Process Biochem 50:876–883

    Article  CAS  Google Scholar 

  141. Tao M, Wang C, Liao D et al (2017) Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem 54:172–179

    Article  CAS  Google Scholar 

  142. Wu QY, Jia JQ, Tan GX, Xu JL, Gui ZZ (2011) Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities. Afr J Biotech 10(32):6145–6153

    CAS  Google Scholar 

  143. Zhang Y, Wang N, Wang W, Wang J, Zhu Z, Li X (2016) Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase. Peptides 76:45–50

    Article  CAS  Google Scholar 

  144. Faruck MO, Yusof F, Chowdhury S (2016) An overview of antifungal peptides derived from insect. Peptides 80:80–88

    Article  CAS  Google Scholar 

  145. Hou L, Shi Y, Zhai P et al (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J Ethnopharmacol 111(2):227–231

    Article  Google Scholar 

  146. Chae J, Kurokawa K, So Y et al (2011) Purification and characterization of tenecin 4, a new anti- Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev Comp Immunol 36:540–546

    Article  CAS  Google Scholar 

  147. Tang JJ, Fang P, Xia HL et al (2015) Constituents from the edible Chinese black ants (Polyrhachis dives) showing protective effect on rat mesangial cells and anti-inflammatory activity. Food Res Int 67:163–168

    Article  CAS  Google Scholar 

  148. Wang Y, Zhao Y, Lei C, Zhu F (2012) Antiviral and antitumor activities of the protein fractions from the larvae of the housefly, Musca domestica. Afr J Biotechnol 11(39):9468–9474

    CAS  Google Scholar 

  149. Elpidina EN, Goptar IA (2007) Digestive peptidases in Tenebrio molitor and possibility of use to treat celiac disease. Entomol Res 37:139–147

    Article  Google Scholar 

  150. Tan HSG, Fischer AR, van Trijp HC, Stieger M (2016) Tasty but nasty? Exploring the role of sensory-liking and food appropriateness in the willingness to eat unusual novel foods like insects. Food Qual Pref 48:293–302

    Article  Google Scholar 

  151. Dossey AT, Tatum JT, McGill WL (2016) Modern insect-based food industry: current status, insect processing technology, and recommendations moving forward. In: Dossey AT, Morales-Ramos JA, Rojas MG (eds) Insects as sustainable food ingredients: production, processing and food applications, 1st edn. Academic, Cambridge, UK

    Google Scholar 

  152. Hall FG, Jones OG, O’Haire ME, Liceaga AM (2017) Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem 224:414–422

    Article  CAS  Google Scholar 

  153. Omotoso OT (2006) Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae). J Zhejiang Univ Sci B 7(1):51–55

    Article  CAS  Google Scholar 

  154. http://criknutrition.com/. Accessed 18 Oct 2017

  155. http://bugmuscle.com/. Accessed 18 Oct 2017

  156. Paul A, Frederich M, Megido RC, Alabi T, Malik P, Uyttenbroeck R, Francis F, Blecker C, Haubruge E, Lognay G, Danthine S (2017) Insect fatty acids: a comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. J Asia Pac Entomol 20(2):337–340

    Article  Google Scholar 

  157. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  158. Muzzarelli RA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 9(9):1510–1533

    Article  CAS  Google Scholar 

  159. Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11(12):5152–5164

    Article  CAS  Google Scholar 

  160. Zhao X, Vázquez-Gutiérrez JL, Johansson DP, Landberg R, Langton M (2016) Yellow mealworm protein for food purposes-extraction and functional properties. PLoS One 11(2):e0147791

    Article  CAS  Google Scholar 

  161. WHO. Food safety Fact sheet Reviewed October 2017. http://www.who.int/mediacentre/factsheets/fs399/en/. Accessed 25 Sept 2017

  162. Aiking H (2011) Future protein supply. Trends Food Sci Technol 22:112–120

    Article  CAS  Google Scholar 

  163. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper. FAO, Rome

    Google Scholar 

  164. Marberg A, van Kranenburg H, Korzilius H (2017) The big bug: the legitimation of the edible insect sector in the Netherlands. Food Pol 71:111–123

    Article  Google Scholar 

  165. Vellinga P, Herb N (1999) Industrial transformation science plan. IHDP, Bonn

    Google Scholar 

  166. Aiking H, De Boer J, Vereijken JM (2006) Sustainable protein production and consumption: pigs or peas? Springer, Dordrecht

    Book  Google Scholar 

  167. Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr 78:660S–663S

    Article  CAS  Google Scholar 

  168. Msangi S, Rosegrant M (2009) World agriculture in a dynamically- changing environment: IFPRI’s long-term outlook for food and agriculture under additional demand and constraints. FAO, Rome. http://www.fao.org/wsfs/forum2050/wsfs-background-documents/wsfs-expert-papers/en/. Accessed 23 Sept 2017

  169. Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of farm animals and animal products. UNESCO-IHE, Delft

    Google Scholar 

  170. van Huis A (2010) Opinion: bugs can solve food crisis. The Scientist. http://www.the-scientistcom/?articlesview/articleNo/29292/title/Opinion-Bugs-can-solve-food-crisis/. Accessed 24 Sept 2017

  171. Collavo A, Glew RH, Huang YS, Chuang LT, Bosse R, Paoletti MG (2005) House cricket small-scale farming. In: Paoletti MG (ed) Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Taylor & Francis, Oxford

    Google Scholar 

  172. Oonincx DGAB, de Boer IJM (2012) Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment. PLoS One 7:e51145

    Article  CAS  Google Scholar 

  173. Oonincx DGAB, van Broekhoven S, van Huis A, van Loon JJA (2015) Feed conversion, survival and development, and composition of four insect species on diets composed of food by- products. PLoS One 10(12):e0144601

    Article  Google Scholar 

  174. Steinfeld H, Gerber P, Wassenaar T et al (2006) Livestock’s long shadow; environmental issues and options. FAO, Rome

    Google Scholar 

  175. Aarnink AJA, Keen A, Metz JHM, Speelman L, Verstegen MWA (1995) Ammonia emission patterns during the growing periods of pigs housed on partially slatted floors. J Agr Econ Res 62:105–116

    Google Scholar 

  176. Greenlee KJ, Harrison JF (2004) Development of respiratory function in the American locust Schistocerca americana I. Across-instar effects. J Exp Biol 207:497–508

    Article  Google Scholar 

  177. Emekci M, Navarro S, Donahaye E, Rindner M, Azrieli A (2002) Respiration of Tribolium castaneum (Herbst) at reduced oxygen concentrations. J Stored Prod Res 38:413–425

    Article  Google Scholar 

  178. Gouveia SM, Simpson SJ, Raubenheimer D, Zanotto FP (2000) Patterns of respiration in Locusta migratoria nymphs when feeding. Physiol Entomol 25:88–93

    Article  Google Scholar 

  179. Emekci M, Navarro S, Donahaye E, Rindner M, Azrieli A (2004) Respiration of Rhyzopertha dominica (F.) at reduced oxygen concentrations. J Stored Prod Res 40:27–38

    Article  Google Scholar 

  180. Koerkamp PW, Metz JHM, Uenk GH et al (1998) Concentrations and emissions of ammonia in livestock buildings in northern Europe. J Agr Econ Res 70:79–95

    Google Scholar 

  181. Nicks B, Laitat M, Vandenheede M et al (2003) Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in the raising of weaned pigs on straw-based and sawdust-based deep litters. Anim Res 52:299–308

    Article  CAS  Google Scholar 

  182. Cabaraux JF, Philippe FX, Laitat M et al (2009) Gaseous emissions from weaned pigs raised on different floor systems. Agric Ecosyst Environ 130:86–92

    Article  CAS  Google Scholar 

  183. Harper LA, Flesch TK, Powell JM et al (2009) Ammonia emissions from dairy production in Wisconsin. J Dairy Sci 92:2326–2337

    Article  CAS  Google Scholar 

  184. Demmers TGM, Burgess LR, Short JL et al (1999) Ammonia emissions from two mechanically ventilated UK livestock buildings. Atmos Environ 33:217–227

    Article  CAS  Google Scholar 

  185. Makkar HPS, Tran G, Heuzé V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33

    Article  CAS  Google Scholar 

  186. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  187. Pastor B, Velasquez Y, Gobbi P, Rojo S (2015) Conversion of organic wastes into fly larval biomass: bottlenecks and challenges. J Insects Food Feed 1:179–193

    Article  Google Scholar 

  188. Srinroch C, Srisomsap C, Chokchaichamnankit D et al (2015) Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem 184:160–166

    Article  CAS  Google Scholar 

  189. Nishimune T, Watanabe Y, Okazaki H, Akai H (2000) Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria. J Nutr 130:1625–1628

    Article  CAS  Google Scholar 

  190. Liu Z, Xia L, Wu Y et al (2009) Identification and characterization of an arginine kinase as a major allergen from silkworm (Bombyx mori) larvae. Int Arch Allergy Immunol 150:8–14

    Article  CAS  Google Scholar 

  191. Yu CJ, Lin YF, Chiang BL, Chow LP (2003) Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 170:445–453

    Article  CAS  Google Scholar 

  192. García-Orozco KD, Aispuro-Hernández E, Yepiz-Plascencia G et al (2007) Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei. Int Arch Allergy Immunol 144:23–28

    Article  CAS  Google Scholar 

  193. Yadzir ZHM, Misnan R, Abdullah N et al (2012) Identification of the major allergen of Macrobrachium rosenbergii (giant freshwater prawn). Asian Pac J Trop Biomed 2(1):50–54

    Article  CAS  Google Scholar 

  194. Khanaruksombat S, Srisomsap C, Chokchaichamnankit D et al (2014) Identification of novel allergen from muscle and various organs in banana shrimp (Fenneropenaeus merguiensis). Ann Allergy Asthma Immunol 113:301–306

    Article  CAS  Google Scholar 

  195. Binder M, Mahler V, Hayek B et al (2001) Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate panallergen. J Immunol 167:5470–5477

    Article  CAS  Google Scholar 

  196. Sookrung N, Chaicumpa W, Tungtrongchitr A et al (2006) Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect 114:875–880

    Article  CAS  Google Scholar 

  197. Chuang JG, Su SN, Chiang BL et al (2010) Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics 10:3854–3867

    Article  CAS  Google Scholar 

  198. Li M, Wang XY, Bai JG (2006) Purification and characterization of arginine kinase from locust. Protein Pept Lett 13(4):405–410

    Article  CAS  Google Scholar 

  199. Bragg J, Rajkovic A, Anderson C et al (2012) Identification and characterization of a putative arginine kinase homolog from Myxococcus xanthus required for fruiting body formation and cell differentiation. J Bacteriol 194(10):2668–2676

    Article  CAS  Google Scholar 

  200. Shanti KN, Martin BM, Nagpal S et al (1993) Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol 151:5354–5363

    CAS  Google Scholar 

  201. Leung PS, Chen YC, Mykles DL et al (1998) Molecular identification of the lobster muscle protein tropomyosin as a seafood allergen. Mol Mar Biol Biotechnol 7:12–20

    CAS  Google Scholar 

  202. Daul CB, Slattery M, Reese G, Lehrer SB (1994) Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol 105:49–55

    Article  CAS  Google Scholar 

  203. Liu GM, Huang YY, Cai QF et al (2011) Comparative study of in vitro digestibility of major allergen, tropomyosin and other proteins between Grass prawn (Penaeus monodon) and Pacific white shrimp (Litopenaeus vannamei). J Sci Food Agric 91:163–170

    Article  CAS  Google Scholar 

  204. Rahman AMA, Kamath S, Lopata L et al (2010) Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry. Rapid Commun Mass Spectrom 24:2462–2470

    Article  CAS  Google Scholar 

  205. Yadzir ZHM, Misnan R, Bakhtiar F et al (2015) Tropomyosin and actin identified as major allergens of the carpet clam (Paphia textile) and the effect of cooking on their allergenicity. Biomed Res Int 2015:254152

    Google Scholar 

  206. Jeong KY, Lee J, Lee IY et al (2003) Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy 58(10):1059–1063

    Article  CAS  Google Scholar 

  207. Asturias JA, Gómez-Bayón N, Arilla MC et al (1999) Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 162(7):4342–4348

    CAS  Google Scholar 

  208. Barletta B, Di Felice G, Pini C (2007) Biochemical and molecular biological aspects of silverfish allergens. Protein Pept Lett 14(10):970–974

    Article  CAS  Google Scholar 

  209. van der Ventel ML, Nieuwenhuizen NE, Kirstein F et al (2011) Differential responses to natural and recombinant allergens in a murine model of fish allergy. Mol Immunol 48:637–646

    Article  CAS  Google Scholar 

  210. Piboonpocanun S, Jirapongsananuruk O, Tipayanon T et al (2011) Identification of hemocyanin as a novel non cross-reactive allergen from the giant freshwater shrimp Macrobrachium rosenbergii. Mol Nutr Food Res 55:1492–1498

    Article  CAS  Google Scholar 

  211. Pick C, Hagner-Holler S, Burmester T (2008) Molecular characterization of hemocyanin and hexamerin from the firebrat Thermobia domestica (Zygentoma). Insect Biochem Mol Biol 38:977–983

    Article  CAS  Google Scholar 

  212. Schabel HG (2010) Forest insects as food: a global review. In: Durst PB, Johnson DV, Leslie RN, Shono K (eds) Forest insects as food: humans bite back. FAO, Bangkok

    Google Scholar 

  213. van der Spiegel M (2016) Safety of foods based on insects. In: Prakash V, Martin-Belloso O, Keener L et al (eds) Regulating safety of traditional and ethnic foods. Academic, Whaltam

    Google Scholar 

  214. Opara MN, Sanyigha FT, Ogbuewu IP, Okoli IC (2012) Studies on the production trend and quality characteristics of palm grubs in the tropical rainforest zone of Nigeria. Int J Agr Tech 8:851–860

    CAS  Google Scholar 

  215. Finke MD, Rojo S, Roos N et al (2015) The European food safety authority scientific opinion on a risk profile related to production and consumption of insects as food and feed. J Insects Food Feed 1(4):245–247

    Article  Google Scholar 

  216. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001

    Google Scholar 

  217. www.bugburger.se. Accessed 5 Oct 2017

  218. Cortes Ortiz JA, Ruiz AT, Morales-Ramos JA et al (2016) Insect mass production technologies. In: Dossey AT, Morales-Ramos JA, Rojas MG (eds) Insects as sustainable food ingredients: production, processing and food applications, 1st edn. Academic, Cambridge, UK

    Google Scholar 

  219. https://www.micronutris.com/en/insectes-aperitifs. Accessed 5 Oct 2017

  220. https://protifarm.com/products/. Accessed 5 Oct 2017

  221. http://www.insects4food.org

  222. https://cowboycrickets.com/. Accessed 5 Oct 2017

  223. https://4ento.com/2015/03/12/top-10-insect-feed-companies/. Accessed 5 Oct 2017

  224. http://www.openbugfarm.com/. Accessed 5 Oct 2017

  225. http://www.bugburger.se/foretag/the-eating-insects-startups-here-is-the-list-of-entopreneurs-around-the-world/. Accessed 5 Oct 2017

  226. https://www.donbugito.com/. Accessed 5 Oct 2017

  227. https://www.crickefood.com/. Accessed 5 Oct 2017

  228. http://www.goffardsisters.com/. Accessed 5 Oct 2017

  229. https://www.coopathome.ch/en/Meat-%26-Fish/Insects/Essento-Insect-Burgers/p/5934433. Accessed 5 Oct 2017

  230. https://www.delibugs.nl/. Accessed 5 Oct 2017

  231. http://www.insectescomestibles.fr/. Accessed 5 Oct 2017

  232. http://www.minifood.be/. Accessed 5 Oct 2017

  233. https://www.wilderharrier.com/. Accessed 5 Oct 2017

  234. https://www.conscientious.cat/. Accessed 5 Oct 2017

  235. http://www.wur.nl/en/Expertise-Services/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects.htm. Accessed 5 Oct 2017

  236. www.ipiff.org. Accessed 5 Oct 2017

  237. www.affia.org. Accessed 5 Oct 2017

  238. http://www.wageningenacademic.com/journals/jiff/general-information. Accessed 5 Oct 2017

  239. Hossain SM, Blair R (2007) Chitin utilisation by broilers and its effect on body composition and blood metabolites. Brit Poultry Sci 48:33–38

    Article  CAS  Google Scholar 

  240. Barrows FT, Bellis D, Krogdahl A et al (2008) Report of plant products in aquafeeds strategic planning workshop: an integrated interdisciplinary roadmap for increasing utilization of plant feedstuffs in diets for carnivorous fish. Rev Fish Sci 16:449–455

    Article  Google Scholar 

  241. Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27

    Article  CAS  Google Scholar 

  242. FEFAC (2012) Statistics 2012. European Feed Manufacturers’ Federation, Brussels. http://www.fefac.eu/files/47239.pdf. Accessed 29 Oct 2017

  243. Spring P (2013) The challenge of cost effective poultry and animal nutrition: optimizing existing and applying novel concepts. Lohmann Inf 48(1):38–46

    Google Scholar 

  244. EUFETEC (2013) Vision & SRIA document 2030 feed for food producing animals. EUFETEC (European Feed Technology Center), Brussels

    Google Scholar 

  245. Henry M, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203:1–22

    Article  CAS  Google Scholar 

  246. Bondari K, Sheppard DC (1987) Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquacult Fish Manag 18:209–220

    Google Scholar 

  247. Hem S, Toure S, Sagbla C, Legendre M (2008) Bioconversion of palm kernel meal for aquaculture: experiences from the forest region (Republic of Guinea). Afr J Biotechnol 7:1192–1198

    Google Scholar 

  248. Newton L, Sheppard C, Watson DW et al (2005) Using the black soldier fly, Hermetia illucens, as a value added tool for the management of swine manure. Animal and Poultry Waste Management Center. North Carolina State University, Raleigh

    Google Scholar 

  249. Stamer A (2015) Insect proteins – a new source for animal feed. EMBO Rep 16(6):676–680

    Article  CAS  Google Scholar 

  250. Raubenheimer D, Rothman JM (2012) Nutritional ecology of entomophagy in humans and other primates. Annu Rev Entomol 58:141–160

    Article  CAS  Google Scholar 

  251. de Marco M, Martínez S, Hernandez F et al (2015) Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol 209:211e218

    Article  CAS  Google Scholar 

  252. Ramaswamy SB (2015) Setting the table for a hotter, flatter, more crowded earth: insects on the menu? J Insects Food Feed 1(3):171–178

    Article  Google Scholar 

  253. Veldkamp T, Bosch G (2015) Insects: a protein-rich feed ingredient in pig and poultry diets. Anim Front 5(2):45–50

    Google Scholar 

  254. Bovera F, Loponte R, Marono S et al (2015) Use of Tenebrio molitor larvae meal as protein source in broiler diet: effect on growth performance, nutrient digestibility, and carcass and meat traits. J Anim Sci 94:639–647

    Article  Google Scholar 

  255. Premalatha M, Abbasi T, Abbasi T, Abbasi SA (2011) Energy-efficient food production to reduce global warming and ecodegradation: the use of edible insects. Renew Sust Energ Rev 15(9):4357–4360

    Article  Google Scholar 

  256. van Huis A, Dicke M, van Loon JJA (2015) Insects to feed the world. J Insects Food Feed 1(1):3–5

    Article  Google Scholar 

  257. Veldkamp T, van Duinkerken G, van Huis A et al (2012) Insects as a sustainable feed ingredientin pig and poultry diets – a feasibility study. Wageningen UR Livestock Research, Wageningen

    Google Scholar 

  258. Smith R, Pryor R (2013) Mapping exercise report with regard to current legislation & regulation: Europe and Africa & China (PROteINSECT Deliverable 5.1). Minerva HCC, Andover

    Google Scholar 

  259. AllAboutFeed (2014) Why are insects not allowed in animal feed? White Paper. Reed Business Media, Doetinchem. http://www.allaboutfeed.net/Global/Whitepapers/Whitepaper_Insect_meal.pdf. Accessed 29 Oct 2017

  260. Kenis M, Hien K (2014) Prospects and constraints for the use of insects as human food and animal feed in West Africa. Book of Abstracts of conference on insects to feed the world, The Netherlands, 14–17 May 2014

    Google Scholar 

  261. Čičková H, Newton GL, Lacy RC, Kozánek M (2015) The use of fly larvae for organic waste treatment. Waste Manag 35:68–80

    Article  CAS  Google Scholar 

  262. Collavo A, Glew RH, Huang YS et al (2005) House cricket small-scale farming. In: Paoletti MG (ed) Ecological implications of Minilivestock: potential of insects, rodents, frogs and snails. Science Publishers, Enfield

    Google Scholar 

  263. Lundy ME, Parrella MP (2015) Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS One 10:e0118785

    Article  CAS  Google Scholar 

  264. Smetana S, Mathys A, Knoch A, Heinz V (2015) Meat alternatives: life cycle assessment of most known meat substitutes. Int J Life Cycle Assess 20:1254–1267

    Article  CAS  Google Scholar 

  265. Newton GL, Booram CV, Barker RW, Hale OM (1977) Dried Hermetia illucens larvae meal as a supplement for swine. J Anim Sci 44:395–399

    Article  CAS  Google Scholar 

  266. Myers HM, Tomberlin JK, Lambert BD, Kattes D (2008) Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ Entomol 37:11–15

    Article  Google Scholar 

  267. Banks IJ, Gibson WT, Cameron MM (2014) Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Tropical Med Int Health 19(1):14–22

    Article  Google Scholar 

  268. Barroso FG, Sánchez-Muros MJ, Segura M et al (2017) Insects as food: enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J Food Comp Anal 62:8–13

    Article  CAS  Google Scholar 

  269. Zheng L, Hou Y, Li W et al (2012) Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 47:225–229

    Article  CAS  Google Scholar 

  270. Halloran A, Hanboonsong Y, Roos N, Bruun S (2017) Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod 156:83–94

    Article  Google Scholar 

  271. Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp App 104:15–25

    Article  CAS  Google Scholar 

  272. Yu SJ, Hsu EL (1993) Induction of detoxification enzymes in phytophagous insects: roles of insecticide synergists, larval age, and species. Arch Insect Biochem 24:21–32

    Article  CAS  Google Scholar 

  273. Chaubey MK (2008) Fumigant toxicity of essential oils from some common spices against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). J Oleo Sci 57:171–179

    Article  CAS  Google Scholar 

  274. Wheeler D, Isman MB (2001) Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomol Exp Appl 98:9–16

    Article  Google Scholar 

  275. Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49(20):12080–12086

    Article  CAS  Google Scholar 

  276. Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49(20):12087–12093

    Article  CAS  Google Scholar 

  277. Sonmez E, Gulel A (2008) Effects of different temperatures on the total carbohydrate, lipid and protein amounts of the bean beetle, Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Pak J Biol Sci 11(14):1803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Zielińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zielińska, E., Karaś, M., Jakubczyk, A., Zieliński, D., Baraniak, B. (2018). Edible Insects as Source of Proteins. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics