Bioactive Compounds from Garcinia Fruits of High Economic Value for Food and Health

  • Hosakatte Niranjana Murthy
  • Vijayalaxmi S. Dandin
  • Dayanand Dalawai
  • So-Young Park
  • Kee-Yoeup Paek
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Garcinias (Mangosteen, Brindle berry, and Kokum) are tropical fruits, and are rich source of nutrients, minerals, vitamins, and dietary fibers. They are also abundant with bioactive compounds namely xanthones, benzophenones, hydroxycitric acid, and anthocyanins. Many studies have detailed that these compounds possess antioxidant, anti-inflammatory, anticancer, antimicrobial, antiallergy, antiulcer, antiparasitic, and antihelminthic activities to aid in human health and also weight loss and appetite-reducing properties, making them good dietary supplements. Therefore, bioactive compounds extracted from Garcinia fruits could be used in the preparation of pharmaceuticals and nutraceuticals. This review presents an overview of the bioactive compounds derived from Garcinia fruits and their biological activities for promoting human health as food and drug.

Keywords

Brindle berry Garcinia Garcinol Hydroxycitric acid Kokum Mangosteen 

Notes

Acknowledgments

This work was partially supported by DST-PURSE-PHASE-II program.

References

  1. 1.
    Lim TK (2012) Edible medicinal and non-medicinal plants. Fruits, vol 2. Springer, HeidelbergCrossRefGoogle Scholar
  2. 2.
    Jung HA, Su BN, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54:2077–2082.  https://doi.org/10.1021/jf052649z CrossRefGoogle Scholar
  3. 3.
    Fu C, Loo AEK, Chia FPP, Huang D (2007) Oligomeric proanthocyanidins from mangosteen pericarps. J Agric Food Chem 55:7689–7694.  https://doi.org/10.1021/jf071166n CrossRefGoogle Scholar
  4. 4.
    Farnsworth RN, Bunyapraphatsara N (1992) Garcinia mangostana Linn. In: Thai medicinal plants. Prachachon Co Ltd, Bangkok, pp 160–162Google Scholar
  5. 5.
    Ji X, Avula B, Khan IA (2007) Quantitative and qualitative determination of six xanthones in Garcinia mangostana L. by LC-PDA and LC-ESI-MS. J Pharm Biomed Anal 43:1270–1276.  https://doi.org/10.1016/j.jpba.2006.10.018 CrossRefGoogle Scholar
  6. 6.
    Nakatani K, Atsumi M, Arakawa T, Oosawa K, Shimura S, Nakahata N, Ohizumi Y (2002) Inhibitions of histamine release and prostaglandin E2 synthesis by mangosteen, a Thai medicinal plant. Biol Pharm Bull 25:1137–1141.  https://doi.org/10.1248/bpb.25.1137 CrossRefGoogle Scholar
  7. 7.
    Moongkarndi P, Kosem N, Luanratana O, Jongsomboonkusol S, Pongpan N (2004) Antiproliferative activity of Thai medicinal plant extracts on human breast adenocarcinoma cell line. Fitoterapia 75:375–377.  https://doi.org/10.1016/j.fitote.2004.01.010 CrossRefGoogle Scholar
  8. 8.
    Saralamp P, Chuakul W, Temsirirkkul R, Clayton T (1996) Medicinal plants in Thailand. Department of Pharmaceutical Botany, Faculty of Pharmacy, Bangkok, p 98Google Scholar
  9. 9.
    Yu L, Zhao M, Yang B, Zhao Q, Jiang Y (2007) Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem 104:176–181.  https://doi.org/10.1016/j.foodchem.2006.11.018 CrossRefGoogle Scholar
  10. 10.
    Sato A, Fujiwara H, Oku H, Ishiguro K, Ohizumi Y (2004) Alpha-mangostin induces Ca2+-ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J Pharmacol Sci 95:33–40.  https://doi.org/10.1254/jphs.95.33 CrossRefGoogle Scholar
  11. 11.
    Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK (2002) Chemistry and biochemistry of (−) hydroxycitric acid from Garcinia. J Agric Food Chem 50:10–22.  https://doi.org/10.1021/jf010753k CrossRefGoogle Scholar
  12. 12.
    Abraham Z, Malik SK, Rao GE, Narayanan SL, Biju S (2006) Collection and characterisation of Malabar tamarind [Garcinia cambogia (Gaertn.) Desr.] Genet Resour Crop Evol 53:401–406.  https://doi.org/10.1007/s10722-004-0584-y CrossRefGoogle Scholar
  13. 13.
    Ketsa S, Paull RE (2011) Mangosteen (Garcinia mangostana L.) In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits, vol 4. Woodhead Publishing, CambridgeGoogle Scholar
  14. 14.
    Nazarudeen A (2010) Nutritional composition of some lesser-known fruits used by ethnic communities and local folks of Kerala. Indian J Tradit Knowl 9:398–402Google Scholar
  15. 15.
    Krishnamurthy N, Lewis YS, Ravindranath B (1982) Chemical constituents of kokam fruit rind. J Food Sci Technol 19:97–100Google Scholar
  16. 16.
    Nayak CA, Rastogi NK, Raghavarao KSMS (2010) Bioactive constituents present in Garcinia indica Choisy and its potential food applications: a review. Int J Food Prop 13:441–453.  https://doi.org/10.1080/10942910802626754 CrossRefGoogle Scholar
  17. 17.
    Mishra A, Bapat MM, Tilak JC, Devasagayam TPA (2006) Antioxidant activity of Garcinia indica (kokam) and its syrup. Curr Sci 91:90–93Google Scholar
  18. 18.
    Peres V, Nagem TJ, De Oliveira FF (2000) Tetraoxygenated naturally occurring xanthones. Phytochemistry 55:683–710.  https://doi.org/10.1016/S0031-9422(00)00303-4 CrossRefGoogle Scholar
  19. 19.
    Huang YL, Chen CC, Chen YJ, Huang RL, Shieh BJ (2001) Three xanthones and a benzophenone from Garcinia mangostana. J Nat Prod 64:903–906.  https://doi.org/10.1021/np000583q CrossRefGoogle Scholar
  20. 20.
    Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538.  https://doi.org/10.2174/092986705774370691 CrossRefGoogle Scholar
  21. 21.
    Schmid W (1855) Ueber das mangostin. Liebigs Ann Chem 93:83–88CrossRefGoogle Scholar
  22. 22.
    Dragendorff O (1930) Uber das harz von Garcinia mangostana L. Liebigs Ann 482:280–301CrossRefGoogle Scholar
  23. 23.
    Chen LG, Yang LL, Wang CC (2008) Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 46:688–693.  https://doi.org/10.1016/j.fct.2007.09.096 CrossRefGoogle Scholar
  24. 24.
    Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2003) Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 66:1124–1127.  https://doi.org/10.1021/np020546u CrossRefGoogle Scholar
  25. 25.
    Suksamrarn S, Komutiban O, Ratananukul P, Chimnoi N, Lartpornmatulee N, Suksamrarn A (2006) Cytotoxic prelylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull 54:301–305Google Scholar
  26. 26.
    Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N, Suksamrarn A (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull (Tokyo) 51:857–859.  https://doi.org/10.1248/cpb.51.857 CrossRefGoogle Scholar
  27. 27.
    Gopalakrishnan G, Banumathi B, Suresh G (1997) Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J Nat Prod 60:519–524.  https://doi.org/10.1021/np970165u CrossRefGoogle Scholar
  28. 28.
    Yates P, Stout GH (1958) The structure of mangostin. J Am Chem Soc 80:1691–1700CrossRefGoogle Scholar
  29. 29.
    Stout GH, Krahn MM, Yates P, Bhat HB (1968) The structure of mangostin. Chem Commun 4:211–212Google Scholar
  30. 30.
    Asai F, Tosa H, Tanaka T, Iinuma M (1995) A xanthone from pericarps of Garcinia mangostana. Phytochemistry 39:943–944.  https://doi.org/10.1016/0031-9422(95)00042-6 CrossRefGoogle Scholar
  31. 31.
    Mahabusarakam W, Wiriyachitra P, Taylor WC (1987) Chemical constituents of Garcinia mangostana. J Nat Prod 50:474–478CrossRefGoogle Scholar
  32. 32.
    Chin YW, Jung HA, Chai H, Keller WJ, Kinghorn AD (2008) Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 69:754–758.  https://doi.org/10.1016/j.phytochem.2007.09.023 CrossRefGoogle Scholar
  33. 33.
    Chairungsrilerd N, Takeuchi K, Ohizumi Y, Nozoe S, Ohta T (1996) Mangostanol, a prenyl xanthone from Garcinia mangostana. Phytochemistry 43:1099–1102.  https://doi.org/10.1016/S0031-9422(96)00410-4 CrossRefGoogle Scholar
  34. 34.
    Ho CK, Huang YL, Chen CC (2002) Garcinone E, a xanthone derivative, has potent cytotoxic effect against hepatocellular carcinoma cell lines. Planta Med 68:975–979.  https://doi.org/10.1055/s-2002-35668 CrossRefGoogle Scholar
  35. 35.
    Suksamrarn S, Suwannapoch N, Ratananukul P, Aroonlerk N, Suksamrarn A (2002) Xanthones from the green fruit hulls of Garcinia mangostana. J Nat Prod 65:761–763.  https://doi.org/10.1021/np010566g CrossRefGoogle Scholar
  36. 36.
    Jefferson A, Quillinan AJ, Scheinmann F, Sim KY (1970) Isolation of γ-mangostin from Garcinia mangostana and preparation of the natural mangostins by selective demethylation. Aust J Chem 23:2539–2543CrossRefGoogle Scholar
  37. 37.
    Jinsart W, Ternai B, Buddhasukh D, Polya GM (1992) Inhibition of wheat embryo calcium-dependant protein kinase and other kinases by mangostin and γ-mangostin. Phytochemistry 31:3711–3713CrossRefGoogle Scholar
  38. 38.
    Gopalakrishnan G, Balaganesan B (2000) Two novel xanthones from Garcinia mangostana. Fitoterapia 71:607–609.  https://doi.org/10.1016/S0367-326X(00)00199-4 CrossRefGoogle Scholar
  39. 39.
    Sen AK, Sarkar KK, Mazumder PC, Banerji N (1980) A xanthone from Garcinia mangostana. Phytochemistry 19:2223–2225CrossRefGoogle Scholar
  40. 40.
    Govindachari TR, Kalyanaraman PS, Muthukumaraswamy N, Pai BR (1971) Xanthones of Garcinia mangostana Linn. Tetrahedron 27:3919–3926CrossRefGoogle Scholar
  41. 41.
    Balasubramanian K, Rajagopalan K (1988) Novel xanthones from Garcinia mangostana, structures of BR-xanthone-A and BR-xanthone-B. Phytochemistry 27:1552–1554CrossRefGoogle Scholar
  42. 42.
    Sen AK, Sarkar KK, Mazumder PC, Banerji N, Uusvuori R, Hase TA (1982) The structures of garcinones A, B and C: three new xanthones from Garcinia mangostana. Phytochemistry 21:1747–1750.  https://doi.org/10.1016/S0031-9422(82)85052-8 CrossRefGoogle Scholar
  43. 43.
    Sen AK, Sarkar KK, Mazumder PC, Banerji N (1986) Garcinone-D, a new xanthone from Garcinia mangostana Linn. Indian J Chem 25B:1157–1158Google Scholar
  44. 44.
    Sakai S, Katsura M, Takayama H, Aimi N, Chokethaworn N, Suttajit M (1993) The structure of Garcinone E. Chem Pharm Bull 41:958–960CrossRefGoogle Scholar
  45. 45.
    Ohno R, Moroishi N, Sugawa H, Maejima K, Saigusa M, Yamanaka M, Nagai M, Yoshimura M, Amakura Y, Nagai R (2015) Mangosteen pericarp extract inhibits the formation of pentosidine and ameliorates skin elasticity. J Clin Biochem Nutr 57:27–32CrossRefGoogle Scholar
  46. 46.
    Du CT, Francis FJ (1977) A research note anthocyanins of mangosteen, Garcinia mangostana. J Food Sci 42:1667–1668CrossRefGoogle Scholar
  47. 47.
    Zarena AS, Udaya Sankar K (2012) Isolation and identification of pelargonidin 3-glucoside in mangosteen pericarp. Food Chem 130:665–670.  https://doi.org/10.1016/j.foodchem.2011.07.106 CrossRefGoogle Scholar
  48. 48.
    Lewis YS, Neelakantan S (1965) (−)-Hydroxycitric acid – the principal acid in the fruits of Garcinia cambogia Desr. Phytochemistry 4:619–625.  https://doi.org/10.1016/S0031-9422(00)86224-X
  49. 49.
    Jayaprakasha GK, Sakariah KK (1998) Determination of organic acids in Garcinia cambogia (Desr.) by high- performance liquid chromatography. J Chromatogr A 806:337–339.  https://doi.org/10.1016/S0021-9673(98)00054-5 CrossRefGoogle Scholar
  50. 50.
    Jayaprakasha GK, Sakariah KK (2000) Determination of (−) hydroxycitric acid in commercial samples of Garcinia cambogia extract by liquid chromatography with ultraviolet detection. J Liq Chromatogr Relat Technol 23:915–923.  https://doi.org/10.1081/JLC-100101498 CrossRefGoogle Scholar
  51. 51.
    Mahapatra S, Mallik SB, Rao GV, Reddy GC, Row TNG (2007) Garcinia lactone. Acta Crystallogr E63:o3869.  https://doi.org/10.1107/S160053680703838X Google Scholar
  52. 52.
    Masullo M, Bassarello C, Bifulco G, Piacente S (2010) Polyisoprenylated benzophenone derivatives from the fruits of Garcinia cambogia and their absolute configuration by quantum chemical circular dichroism calculations. Tetrahedron 66:139–145.  https://doi.org/10.1016/j.tet.2009.11.034 CrossRefGoogle Scholar
  53. 53.
    Masullo M, Bassarello C, Suzuki H, Pizza C, Piacente S (2008) Polyisoprenylated benzophenones and an unusual polyisoprenylated tetracyclic xanthone from the fruits of Garcinia cambogia. J Agric Food Chem 56:5205–5210.  https://doi.org/10.1021/jf800416j CrossRefGoogle Scholar
  54. 54.
    Kolodziejczyk J, Masullo M, Olas B, Piacente S, Wachowicz B (2009) Effects of garcinol and guttiferone K isolated from Garcinia cambogia on oxidative/nitrative modifications in blood platelets and plasma. Platelets 20:487–492.  https://doi.org/10.3109/09537100903165182 CrossRefGoogle Scholar
  55. 55.
    Masullo M, Menegazzi M, Di Micco S, Beffy P, Bifulco G, Dal Bosco M, Novelli M, Pizza C, Masiello P, Piacente S (2014) Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT-1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways. J Nat Prod 77:543–549.  https://doi.org/10.1021/np400804y CrossRefGoogle Scholar
  56. 56.
    Jayaprakasha GK, Sakariah KK (2002) Determination of organic acids in leaves and rinds of Garcinia indica (Desr.) by LC. J Pharm Biomed Anal 28:379–384.  https://doi.org/10.1016/S0731-7085(01)00623-9 CrossRefGoogle Scholar
  57. 57.
    Krishnamurthy N, Lewis YS, Ravindranath B (1981) On the structures of garcinol, isogarcinol and camboginol. Tetrahedron Lett 22:793–796CrossRefGoogle Scholar
  58. 58.
    Chattopadhyay SK, Kumar S (2006) Identification and quantification of two biologically active polyisoprenylated benzophenones xanthochymol and isoxanthochymol in Garcinia species using liquid chromatography-tandem mass spectrometry. J Chromatogr B 844:67–83.  https://doi.org/10.1016/j.jchromb.2006.07.045 CrossRefGoogle Scholar
  59. 59.
    Nayak CA, Srinivas P, Rastogi NK (2010) Characterization of anthocyanins from Garcinia indica Choisy. Food Chem 118:719–724.  https://doi.org/10.1016/j.foodchem.2009.05.052 CrossRefGoogle Scholar
  60. 60.
    Jamila N, Choi JY, Hong JH, Nho EY, Khan N, Jo CH, Chun HS, Kim KS (2016) Identification and quantification of adulteration in Garcinia cambogia commercial products by chromatographic and spectrometric methods. Food Addit Contam Part A Chem 33:1751–1760.  https://doi.org/10.1080/19440049.2016.1244733 CrossRefGoogle Scholar
  61. 61.
    Padhye S, Ahmad A, Oswal N, Sarkar FH (2009) Emerging role of garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2(38):1–13.  https://doi.org/10.1186/1756-8722-2-38 Google Scholar
  62. 62.
    Chin YW, Kinghorn AD (2008) Structural characterization, biological effects, and synthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini Rev Org Chem 5:355–364.  https://doi.org/10.2174/157019308786242223 CrossRefGoogle Scholar
  63. 63.
    Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46:3227–3239.  https://doi.org/10.1016/j.fct.2008.07.024 CrossRefGoogle Scholar
  64. 64.
    Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M (2009) Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 23:1047–1065CrossRefGoogle Scholar
  65. 65.
    Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 11:666–677.  https://doi.org/10.2174/156652411797536679 CrossRefGoogle Scholar
  66. 66.
    Williams P, Ongsakul M, Proudfoot J, Croft K, Beilin L (1995) Mangostin inhibits the oxidative modification of human low density lipoprotein. Free Radic Res 23:175–184.  https://doi.org/10.3109/10715769509064030 CrossRefGoogle Scholar
  67. 67.
    Mahabusarakam W, Proudfoot J, Taylor W, Croft K (2000) Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin. Free Radic Res 33:643–659.  https://doi.org/10.1080/10715760000301161 CrossRefGoogle Scholar
  68. 68.
    Sampath PD, Vijayaraghavan K (2007) Cardioprotective effect of α-mangostin, a xanthone derivative from mangosteen on tissue defense system against isoproterenol-induced myocardial infarction in rats. J Biochem Mol Toxicol 21:336–339CrossRefGoogle Scholar
  69. 69.
    Pérez-Rojas JM, Cruz C, García-López P, Sánchez-González DJ, Martínez-Martínez CM, Ceballos G, Espinosa M, Meléndez-Zajgla J, Pedraza-Chaverri J (2009) Renoprotection by α -mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity. Free Radic Res 43:1122–1132.  https://doi.org/10.1080/10715760903214447 CrossRefGoogle Scholar
  70. 70.
    Buelna-Chontal M, Correa F, Hernández-Reséndiz S, Zazueta C, Pedraza-Chaverri J (2011) Protective effect of α-mangostin on cardiac reperfusion damage by attenuation of oxidative stress. J Med Food 14:1370–1374.  https://doi.org/10.1089/jmf.2010.0238 CrossRefGoogle Scholar
  71. 71.
    Shankaranarayan D, Gopalakrishnan C, Kameswaran L (1979) Pharmacological profile of mangostin and its derivatives. Arch Int Pharmacodyn Ther 239:257–269Google Scholar
  72. 72.
    Deschamps JD, Gautschi JT, Whitman S, Johnson TA, Gassner NC, Crews P, Holman TR (2007) Discovery of platelet-type 12-human lipoxygenase selective inhibitors by high-throughput screening of structurally diverse libraries. Bioorg Med Chem 15:6900–6908.  https://doi.org/10.1016/j.bmc.2007.08.015 CrossRefGoogle Scholar
  73. 73.
    Chae HS, Oh SR, Lee HK, Joo SH, Chin YW (2012) Mangosteen xanthones, α- and γ-mangostins, inhibit allergic mediators in bone marrow-derived mast cell. Food Chem 134:397–400.  https://doi.org/10.1016/j.foodchem.2012.02.075 CrossRefGoogle Scholar
  74. 74.
    Akao Y, Nakagawa Y, Iinuma M, Nozawa Y (2008) Anti-cancer effects of xanthones from pericarps of mangosteen. Int J Mol Sci 9:355–370.  https://doi.org/10.3390/ijms9030355 CrossRefGoogle Scholar
  75. 75.
    Matsumoto K, Akao Y, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2005) Xanthones induce cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells. Bioorg Med Chem 13:6064–6069.  https://doi.org/10.1016/j.bmc.2005.06.065 CrossRefGoogle Scholar
  76. 76.
    Kurose H, Shibata M-A, Iinuma M, Otsuki Y (2012) Alterations in cell cycle and induction of apoptotic cell death in breast cancer cells treated with α -mangostin extracted from mangosteen pericarp. J Biomed Biotechnol 2012:1–9.  https://doi.org/10.1155/2012/672428 CrossRefGoogle Scholar
  77. 77.
    Hung S-H, Shen K-H, C-H W, Liu C-L, Shih Y-W (2009) α-Mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J Agric Food Chem 57:1291–1298CrossRefGoogle Scholar
  78. 78.
    Wang Y, Xia Z, JR X, Wang YX, Hou LN, Qiu Y, Chen HZ (2012) α-Mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates β-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology 62:871–881.  https://doi.org/10.1016/j.neuropharm.2011.09.016 CrossRefGoogle Scholar
  79. 79.
    Aisha AFA, Abu-Salah KM, Ismail Z, Majid AMSA (2012) In vitro and in vivo anti-colon cancer effects of Garcinia mangostana xanthones extract. BMC Complement Altern Med 12:104–113.  https://doi.org/10.1186/1472-6882-12-104 CrossRefGoogle Scholar
  80. 80.
    Mahabusarakam W, Wiriyachitra P, Phongpaichit S (1986) Antimicrobial activities of chemical constituents from Garcinia mangostana Linn. J Sci Soc Thail 12:239–242CrossRefGoogle Scholar
  81. 81.
    Iinuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi KI (1996) Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphyloococcus aureus. J Pharm Pharmacol 48:861–865.  https://doi.org/10.1111/j.2042-7158.1996.tb03988.x CrossRefGoogle Scholar
  82. 82.
    Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N (2009) Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia 80:102–104CrossRefGoogle Scholar
  83. 83.
    Koh JJ, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, Tang C, Saraswathi P, Verma C, Tan DTH, Tan AL, Liu S, Beuerman RW (2013) Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta Biomembr 1828:834–844.  https://doi.org/10.1016/j.bbamem.2012.09.004 CrossRefGoogle Scholar
  84. 84.
    Torrungruang K, Vichienroj P, Chutimaworapan S (2007) Antibacterial activity of mangosteen pericarp extract against cariogenic Streptococcus mutans. CU. Dent J 30:1–10Google Scholar
  85. 85.
    Sundaram BM, Gopalakrishnan C, Subramanian S, Shankaranarayanan D, Kameswaran L (1983) Antimicrobial activities of Garcinia mangostana. Planta Med 48:59–60.  https://doi.org/10.1055/s-2007-969882 CrossRefGoogle Scholar
  86. 86.
    Chen SX, Wan M, Loh BN (1996) Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med 62:381–382.  https://doi.org/10.1055/s-2006-957916 CrossRefGoogle Scholar
  87. 87.
    Kaomongkolgit R, Jamdee K, Chaisomboon N (2009) Antifungal activity of alpha-mangostin against Candida albicans. J Oral Sci 51:401–406.  https://doi.org/10.2334/josnusd.51.401 CrossRefGoogle Scholar
  88. 88.
    Ee GCL, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M (2006) Xanthones from Garcinia mangostana (Guttiferae). Nat Prod Res 20:1067–1073.  https://doi.org/10.1080/14786410500463114 CrossRefGoogle Scholar
  89. 89.
    Bullangpoti V, Visetson S, Milne J, Milne M, Sudthongkong C, Pronbanlualap S (2007) Effects of alpha-mangostin from mangosteen pericarp extract and imidacloprid on Nilaparvata lugens (Stal.) and non-target organisms: toxicity and detoxification mechanism. Commun Agric Appl Biol Sci 72:431–441Google Scholar
  90. 90.
    Larson RT, Lorch JM, Pridgeon JW, Becnel JJ, Clark GG, Lan Q (2010) The biological activity of α-Mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. J Med Entomol 47:249–257Google Scholar
  91. 91.
    Kim M-S, Lan Q (2011) Larvicidal activity of α-mangostin in the Colorado potato beetle, Leptinotarsa decemlineata. J Pestic Sci 36:370–375.  https://doi.org/10.1584/jpestics.G11-09 CrossRefGoogle Scholar
  92. 92.
    Bullangpoti V, Visetson S, Milne J, Pornbanlualap S (2004) Effects of mangosteen’s peels and rambutan’s seeds on toxicity, esterase and glutathione-S-transferase in rice weevil (Sitophilus oryzae L.) Kasetsart J (Nat Sci) 38:84–89Google Scholar
  93. 93.
    Bullangpoti V, Visetson S, Milne M, Milne J, Pornbanlualap S, Sudthongkongs C, Tayapat S (2006) The novel botanical insecticide for the control brown planthopper (Nilaparvata lugens Stal.) Commun Agric Appl Biol Sci 71:475–481Google Scholar
  94. 94.
    Keiser J, Vargas M, Winter R (2012) Anthelminthic properties of mangostin and mangostin diacetate. Parasitol Int 61:369–371.  https://doi.org/10.1016/j.parint.2012.01.004 CrossRefGoogle Scholar
  95. 95.
    Wu S-B, Long C, Kennelly EJ (2014) Structural diversity and bioactivities of natural benzophenones. Nat Prod Rep 31:1158–1174.  https://doi.org/10.1039/C4NP00027G CrossRefGoogle Scholar
  96. 96.
    Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185CrossRefGoogle Scholar
  97. 97.
    Yamaguchi F, Saito M, Ariga T, Yoshimura Y (2000) Free radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:2320–2325CrossRefGoogle Scholar
  98. 98.
    Hong J, Sang S, Park H-J, Kwon SJ, Suh N, Huang M-T, Ho C-T, Yang CS (2006) Modulation of arachidonic acid metabolism and nitric oxide synthesis by garcinol and its derivatives. Carcinogenesis 27:278–286.  https://doi.org/10.1093/carcin/bgi208 CrossRefGoogle Scholar
  99. 99.
    Sang S, Pan M, Cheng X, Bai N, Stark RE, Rosen RT, Lin-Shiau SY, Lin JK, Ho CT (2001) Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with their antitumor activities. Tetrahedron 57:9931–9938CrossRefGoogle Scholar
  100. 100.
    Sang S, Liao CH, Pan MH, Rosen RT, Lin-Shiau SY, Lin JK, Ho CT (2002) Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron 58:10095–10102.  https://doi.org/10.1016/S0040-4020(02)01411-4 CrossRefGoogle Scholar
  101. 101.
    Hung W, Liu C, Lai C, Ho C, Pan M (2015) Inhibitory effect of garcinol against 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. J Funct Foods 18:65–73CrossRefGoogle Scholar
  102. 102.
    Koeberle A, Northoff H, Werz O (2009) Identification of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 as functional targets of the anti-inflammatory and anti-carcinogenic garcinol. Biochem Pharmacol 77:1513–1521CrossRefGoogle Scholar
  103. 103.
    Tanaka T, Kohno H, Shimada R, Kagami S, Yamaguchi F, Kataoka S, Ariga T, Murakami A, Koshimizu K, Ohigashi H (2000) Prevention of colonic aberrant crypt foci by dietary feeding of garcinol in male F344 rats. Carcinogenesis 21:1183–1189.  https://doi.org/10.1093/carcin/21.6.1183 CrossRefGoogle Scholar
  104. 104.
    Liao C, Ho C, Lin J (2005) Effects of garcinol on free radical generation and NO production in embryonic rat cortical neurons and astrocytes. Biochem Biophys Res Commun 329:1306–1314.  https://doi.org/10.1016/j.bbrc.2005.02.110 CrossRefGoogle Scholar
  105. 105.
    Hong J, Joo S, Sang S, Ju J, Zhou J (2007) Effects of garcinol and its derivatives on intestinal cell growth : inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic Biol Med 42:1211–1221.  https://doi.org/10.1016/j.freeradbiomed.2007.01.016 CrossRefGoogle Scholar
  106. 106.
    Pan M, Chang W, Ho C, Lin J (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464–1474CrossRefGoogle Scholar
  107. 107.
    Ahmad A, Wang Z, Ali R, Maitah MY, Kong D, Banerjee S, Padhye S, Sarkar FH (2010) Apoptosis-inducing effect of garcinol is mediated by NF-κB signaling in breast cancer cells. J Cell Biochem 109:1134–1141.  https://doi.org/10.1002/jcb.22492 Google Scholar
  108. 108.
    Ahmad A, Wang Z, Wojewoda C, Ali R, Kong D, Maitah MY, Banerjee S, Bao B, Padhye S, Sarkar FH (2011) Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kB signaling. Front Biosci (Elite Ed) 3:1483–1492Google Scholar
  109. 109.
    Miller TA (1987) Mechanisms of stress-related mucosomal damage. Am J Med 83:8–14CrossRefGoogle Scholar
  110. 110.
    Perry MA, Wadhwa S, Parks DA, Pickard WES, Granger DN (1986) Role of oxygen radicals in ischemia-induced lesions in the cat stomach. Gastroenterology 90:362–367CrossRefGoogle Scholar
  111. 111.
    De Haar JL, Wielinga PY, Scheurink AJW, Nieuwenhuizen AG (2005) Comparison of the effects of three different (−)-hydroxycitric acid preparations on food intake in rats. Nutr Metab 2:1–9CrossRefGoogle Scholar
  112. 112.
    Chuah LO, Ho WY, Beh BK, Yeap SK (2013) Updates on antiobesity effect of Garcinia origin (−)-HCA. Evid Based Complement Alternat Med 2013:1–17.  https://doi.org/10.1155/2013/751658 CrossRefGoogle Scholar
  113. 113.
    Sullivan AC, Triscari J, Spiegel HE (1977) Metabolic regulation as a control for lipid disorders. I. Influence of, (−)-hydroxycitrate on experimentally induced obesity in the rodent. Am J Clin Nutr 30:767–776Google Scholar
  114. 114.
    Sullivan AC, Triscari J, Spiegel HE (1977) Metabolic regulation as a control for lipid disorders. II. Influence of (−)-hydroxycitrate on genetically and experimentally induced hypertriglyceridemia in the rat. Am J Clin Nutr 30:777–784Google Scholar
  115. 115.
    Preuss HG, Bagchi D, Bagchi M, Rao CVS, Dey DK, Satyanarayana S (2004) Effects of a natural extract of (−)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes Metab 6:171–180CrossRefGoogle Scholar
  116. 116.
    Asghar M, Zeyssig R, Monjok E, Kouamou G, Ohia SE, Lokhandwala MF, Bagchi D (2006) Hydroxycitric acid (HCA-SX) decreases oxidative stress and insulin resistance and increases brain serotonin levels in obese Zucker rats. Exp Biol Meet 20:A655.4Google Scholar
  117. 117.
    Sullivan AC, Triscari J, Hamilton JG (1974) Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat: I. Lipogenesis. Lipids 9:121–128CrossRefGoogle Scholar
  118. 118.
    Sullivan AC, Triscari J, Hamilton JG, Miller ON (1974) Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat: II. Appetite. Lipids 9:129–134CrossRefGoogle Scholar
  119. 119.
    Ishihara K, Oyaizu S, Onuki K, Lim K, Fushiki T (2000) Chronic (−)-hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. J Nutr 130:2990–2995Google Scholar
  120. 120.
    Lim K, Ryu S, Ohishi Y, Watanabe I, Tomi H, Suh H, Lee W, Kwon T (2002) Short-term (−)-hydroxycitrate ingestion increases fat oxidation during exercise in athletes. J Nutr Sci Vitaminol 48:128–133CrossRefGoogle Scholar
  121. 121.
    Lim K, Ryu S, Nho H, Choi S, Kwon T, Suh H, So J, Tomita K, Okuhara Y, Shigematsu N (2003) (−)-Hydroxycitric acid ingestion increases fat utilization during exercise in untrained women. J Nutr Sci Vitaminol 49:163–167CrossRefGoogle Scholar
  122. 122.
    Bhat DJ, Kamat N, Shirodkar A (2005) Compendium and proceedings of 2nd National seminar on Kokum (Garcinia indica Choicy), March 4–5, 2005 held at Goa UniversityGoogle Scholar
  123. 123.
    Francis FJ, Markakis PC (1989) Food colorants : anthocyanins. Crit Rev Food Sci Nutr 28:273–314CrossRefGoogle Scholar
  124. 124.
    Scazzocchio B, Varì R, Filesi C, D’Archivio M, Santangelo C, Giovannini C, Iacovelli A, Silecchia G, Volti GL, Galvano F, Masella R (2011) Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes 60:2234–2244.  https://doi.org/10.2337/db10-1461 CrossRefGoogle Scholar
  125. 125.
    Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf 12:483–508.  https://doi.org/10.1111/1541-4337.12024 CrossRefGoogle Scholar
  126. 126.
    Ferrari D, Cimino F, Fratantonio D, Molonia MS, Bashllari R, Busà R, Saija A, Speciale A (2017) Cyanidin-3-O-glucoside modulates the in vitro inflammatory crosstalk between intestinal epithelial and endothelial cells. Mediators Inflamm. 2017, 8 pages doi:  https://doi.org/10.1155/2017/3454023
  127. 127.
    Min J, Yu SW, Baek SH, Nair KM, Bae ON, Bhatt A, Kassab M, Nair MG, Majid A (2011) Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci Lett 500:157–161.  https://doi.org/10.1016/j.neulet.2011.05.048 CrossRefGoogle Scholar
  128. 128.
    Wang L, Li H, Yang S, Ma W, Liu M, Guo S, Zhan J, Zhang H, Tsang SY, Zhang Z, Wang Z, Li X, Guo Y-D, Li X (2016) Cyanidin-3-O-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget 7:68864–68882.  https://doi.org/10.18632/oncotarget.12025 CrossRefGoogle Scholar
  129. 129.
    Gutierrez-Orozco F, Failla ML (2013) Biological activities and bioavailability of mangosteen xanthones: a critical review of current evidences. Forum Nutr 5:3163–3183Google Scholar
  130. 130.
    Marquez F, Babio N, Bullo M, Salas-Salvodo J (2012) Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci 52:585–594CrossRefGoogle Scholar
  131. 131.
    Saadat N, Gupta SV (2012) Potential review of garcinol as an anticancer agent. J Oncol 2012:1–8.  https://doi.org/10.1155/2012/647206 CrossRefGoogle Scholar
  132. 132.
    Yousuf B, Gul K, Wani AA, Singh P (2016) Health benefits of anthocyanins and their encapsulation for potential used in food system: a review. Crit Rev Food Sci 56:2223–2230CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hosakatte Niranjana Murthy
    • 1
    • 2
  • Vijayalaxmi S. Dandin
    • 1
  • Dayanand Dalawai
    • 1
  • So-Young Park
    • 2
  • Kee-Yoeup Paek
    • 2
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia
  2. 2.Research Center for the Development of Advanced Horticultural TechnologyChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations