Advertisement

Sesame: Bioactive Compounds and Health Benefits

  • Niti Pathak
  • Asani Bhaduri
  • Ashwani K Rai
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Sesame is a valuable oilseed crop that contains various nutritionally rich bioactive compounds including lignans, tocopherol homologues, phytosterols, etc. Lignans are the product of oxidative coupling of β-hydroxyphenylpropane. Sesame has a combination of glycosylated lignans and oil-dispersed lignans. Based on their medicinal and pharmacological properties, the most important lignans are sesamin, sesamol, sesamolin, and sesaminol. Tocopherols (vitamin E compounds) are the lipid-soluble free radicals and constitute a major part of human diet. In sesame seeds, α-, γ-, and δ-tocopherols are found as tocopherol homologues. In addition to lignans and tocopherols, sesame is an important source of phytosterols, phytates, polyunsaturated fatty acids, and bioactive peptides. However, utilization potential of many of these compounds has not yet been fully understood. This chapter delves into the presence of multifarious bioactive components in sesame seeds, their biosynthetic pathway, and functional importance.

Keywords

Bioactive compounds Sesame Sesamin Sesamolin Sesamol Pinoresinol Tocopherol Phytosterols 

Abbreviations

CYP81Q1

Sesamin synthase

DIR1

Dirigent protein

DMPQ

2,3-Dimethyl-5-phytyl-1,4-hydroquinol

VTE1

Tocopherol cyclase

γ-TMT

γ-Tocopherol methyltransferase

Notes

Acknowledgments

Ashwani K Rai gratefully acknowledges the National Academy of Sciences, India, for awarding NASI-Senior Scientist Platinum Jubilee Fellowship. Niti Pathak wishes to thank Dr. K V Bhat, NBPGR for the work carried out in his lab.

References

  1. 1.
    Ashri A (2007) Sesame (Sesamum indium L.) In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, Oilseed crops, vol 4. CRC Press, Boca Raton, pp 231–289Google Scholar
  2. 2.
    Joshi AB (1961) Sesamum. Indian Central Oilseed Committee, Hyderabad, pp 1–109Google Scholar
  3. 3.
    Weiss EA (1971) Sesame, castor and safflower, barnes and noble, World crop series. Leonard Hill, New York, pp 311–525Google Scholar
  4. 4.
    Bedigian D, Seihler DS, Harlan JR (1985) Sesamin, sesamolin and the origin of sesame. Biochem Syst Ecol 13:133–139CrossRefGoogle Scholar
  5. 5.
    Bedigian D, Harlan JR (1986) Evidence for cultivation of sesame in the ancient world. Econ Bot 40:137–154CrossRefGoogle Scholar
  6. 6.
    USDA (2015) USDA national nutrient database for standard reference, release 18. U.S. Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory, Beltsville. http://www.nal.usda.gov/fnic/foodcomp Google Scholar
  7. 7.
    Pathak N, Rai AK, Ratna K, Bhat KV (2014) Value addition in sesame: a perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev 8(16):147–155.  https://doi.org/10.4103/0973-7847.134249 CrossRefGoogle Scholar
  8. 8.
    Dimitrios B (2006) Sources of natural phenol antioxidants. Trends Food Sci Technol 17:505–512CrossRefGoogle Scholar
  9. 9.
    Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans I- review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242SGoogle Scholar
  10. 10.
    Temple NJ (2000) Antioxidants and disease: more questions than answers. Nutr Res 20:449–559CrossRefGoogle Scholar
  11. 11.
    Kamal-Eldin A, Appelquist LA, Yousif G (1994) Lignan analysis in seed oils from four sesamum species: comparison of different chromatographic methods. J Am Oil Chem Soc 71:141–145CrossRefGoogle Scholar
  12. 12.
    Robinson R (1927) The relationship of some complex natural products to the simple sugars and amino acids. Durham Univ Philos Soc 8:14–59Google Scholar
  13. 13.
    Haworth RD (1936) Natural resins. Annu Rep Progr Chem 33:266–279Google Scholar
  14. 14.
    Katsuzaki H, Osawa T, Kawakishi S (1994) Chemistry and antioxidative activity of lignan glucosides in sesame seed. ACS Symp Ser 574:275–280CrossRefGoogle Scholar
  15. 15.
    Katsuzaki H, Osawa T, Kawashiki S (1994) Chemistry and antioxidative activity of lignan glucosides in sesame seed, Chapter 28. In: Food phytochemicals for cancer prevention, ACS symposium series, vol 547. American Chemical Society, Washington, DC, pp 275–280CrossRefGoogle Scholar
  16. 16.
    Moazzami AA, Andersson RE, Kamal-Eldin A (2006) HPLC analysis of sesaminol glucosides in sesame seeds. J Agric Food Chem 54:633–638.  https://doi.org/10.1021/jf051541g CrossRefGoogle Scholar
  17. 17.
    Brar G, Ahuja KL (1979) Sesame: its culture, genetics, breeding and biochemistry. Annu Rev Plant Sci 1:245–313Google Scholar
  18. 18.
    Yamashita K, Iizuka Y, Imai T, Namiki M (1995) Sesame seed and its lignans produce marked enhancement of vitamin E activity in rats fed a low alpha- tocopherol diet. Lipids 30: 1019–1028CrossRefGoogle Scholar
  19. 19.
    Namiki M (1995) The chemistry and physiological functions of sesame. Food Rev Int 11: 281–329CrossRefGoogle Scholar
  20. 20.
    Kamal-Eldin A (2005) Minor components in vegetable oils. In: Shahidi F (ed) Baileys industrial fats and oils. Chapter 12, edible oil and fat products: speciality oils and oil products. Wiley, SussexGoogle Scholar
  21. 21.
    Haller HL, Mc Govran ER, Goodhue LD, Sullivan WN (1942) The synergistic action of sesamin with pyrethrum insecticides. J Org Chem 7(2):183–184CrossRefGoogle Scholar
  22. 22.
    Jones WA, Beroza M, Decker ED (1962) Isolation and structure of sesangolin: a constituent of Sesamum angolense. J Org Chem 27:3232–3235CrossRefGoogle Scholar
  23. 23.
    Cassida JE, Engel JL, Essac EG, Kamienski FX, Kuwatsuka S (1966) Methylene-14C-dioxyphenyl compounds: metabolism in relation to their synergistic action. Science 153: 1130–1133CrossRefGoogle Scholar
  24. 24.
    Mathews CK, Van Holde KE, Ahern KG (2000) Biochemistry, 3rd edn, Benjamin/Cummings, an imprint of Addison Wesley Longman, pp 700–704Google Scholar
  25. 25.
    Jain SC, Khanna P (1973) Production of sterols from Sesamum indicum L. tissue culture. Indian J Pharm 35:163–164Google Scholar
  26. 26.
    Kato MJ, Chu A, Davin LB, Lewis NG (1998) Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry 47(4):583–591CrossRefGoogle Scholar
  27. 27.
    Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366CrossRefGoogle Scholar
  28. 28.
    Jiao Y, Davin LB, Lewis NG (1998) Furanofuran lignan metabolism as a function of seed maturation in Sesamum indicum: methylenedioxy bridge formation. Phytochemistry 49: 387–394CrossRefGoogle Scholar
  29. 29.
    Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103(26):10116–10121CrossRefGoogle Scholar
  30. 30.
    Yoshida Y, Niki E, Noguchi N (2003) Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chem Phys Lipids 123(1):63–75CrossRefGoogle Scholar
  31. 31.
    Hofius D, Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 8(1):6–8CrossRefGoogle Scholar
  32. 32.
    Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13(10): 1145–1155Google Scholar
  33. 33.
    Colombo ML (2010) An update on vitamin E, tocopherol and tocotrienol- perspectives. Molecules 15(4):2103–2113.  https://doi.org/10.3390/molecules15042103 CrossRefGoogle Scholar
  34. 34.
    Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Rexborough HE, Schuch W, Sheehy PJA, Wagner KH (2000) Vitamin E. J Sci Food Agric 80:913–938CrossRefGoogle Scholar
  35. 35.
    Herbers K (2003) Vitamin production in transgenic plants. J Plant Physiol 160:821–829.  https://doi.org/10.1078/0176-1617-01024 CrossRefGoogle Scholar
  36. 36.
    Franzen JJ, Bausch D, Glatze D, Wagner E (1991) Distribution of vitamin E in spruce seedling and mature tree organs, and within the genus. Phytochemistry 30:147–151CrossRefGoogle Scholar
  37. 37.
    Hassapidou MN, Manoukas AG (1993) Tocopherol and tocotrienol compositions of raw table olive fruit. J Sci Food Agric 61(2):277–280CrossRefGoogle Scholar
  38. 38.
    DellaPenna (2005) Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci 10:574–579.  https://doi.org/10.1016/j.tplants.2005.10.007 CrossRefGoogle Scholar
  39. 39.
    Norris SR, Shen X, DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117:1317–1323CrossRefGoogle Scholar
  40. 40.
    Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127: 1113–1124CrossRefGoogle Scholar
  41. 41.
    Savidge B, Weiss JD, Wong YHH, Lassner MW, Mitsky TA, Shewmaker CK, Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–322CrossRefGoogle Scholar
  42. 42.
    Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, Dellapenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356CrossRefGoogle Scholar
  43. 43.
    Van Eenennaam AL, Lincoln K, Durett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15(12):3007–3019CrossRefGoogle Scholar
  44. 44.
    Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci U S A 99:12495–12500CrossRefGoogle Scholar
  45. 45.
    Sattler SE, Cajon EB, Coughlin SJ, DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria: evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195CrossRefGoogle Scholar
  46. 46.
    Budowski P, Markley KS (1951) The chemical and physiological properties of sesame oil. Chem Rev 48:125–151CrossRefGoogle Scholar
  47. 47.
    Osawa T, Nagata M, Namiki M, Fukuda Y (1985) Sesamolinol, a novel antioxidant isolated from sesame seeds. Agric Biol Chem 49:3351–3352Google Scholar
  48. 48.
    Hirata F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H (1996) Hypercholesterolemic effect of sesame lignan in human. Atherosclerosis 122:135–136CrossRefGoogle Scholar
  49. 49.
    Shimizu S, Akimoto K, Shinmen Y, Kawashima H, Sugano M, Yamada H (1991) Sesamin is a potent and specific inhibitor of delta-5-desaturase in polyunsaturated fatty acid biosynthesis. Lipids 26:512–516CrossRefGoogle Scholar
  50. 50.
    Hirose N, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizu S, Yamada S (1991) Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32:629–638Google Scholar
  51. 51.
    Yokota T, Matsuzaki Y, Koyama M, Hitomi T, Kawanaka M, Enoki-Konish M, Okuyama Y, Takayasu J, Nishino H, Nishikawa A, Osawa T, Sakai T (2007) Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells. Cancer Sci 98(9): 1447–1453.  https://doi.org/10.1111/j.1349-7006.2007.00560.x CrossRefGoogle Scholar
  52. 52.
    Hsu DZ (2005) Effect of sesame oil on oxidative-stress-associated renal injury in endotoxemic rats: involvement of nitric oxide and proinflammatory cytokines. Shock 24:276–280CrossRefGoogle Scholar
  53. 53.
    Ashakumary L, Rouyer I, Takahashi Y, Ide T, Fukuda N, Aoyama T, Hashimoto T, Mizugaki M, Sugano M (1999) Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism 48:1303–1313CrossRefGoogle Scholar
  54. 54.
    Nonaka M, Yamashita K, Izuka Y, Namiki M (1997) Effects of sesaminol and sesamin on eicosanoid production and immunoglobulin level in rats given ethanol. Biosci Biotechnol Biochem 61:836–839CrossRefGoogle Scholar
  55. 55.
    Lee CC, Chen PR, Lin S, Tsai SC, Wang BW, Chen WW (2004) Sesamin induces nitric oxide and decreases endothelin-1 production in HUVECs: possible implications for its antihypertensive effect. J Hypertens 22:2329–2338CrossRefGoogle Scholar
  56. 56.
    Nakano D, Kurumazuka D, Nagai Y, Nishiyama A, Kiso Y, Matsumura Y (2008) Dietary sesamin suppresses aortic NADPH oxidase in DOCA salt hypertensive rats. Clin Exp Pharmacol Physiol 35(3):324–326.  https://doi.org/10.1111/j.1440-1681.2007.04817.x CrossRefGoogle Scholar
  57. 57.
    Cheng FC, Jinn TR, Hou RC, Tzen JTC (2006) Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. Int J Biomed Sci 2(3):284–288Google Scholar
  58. 58.
    Hemalatha S, Ghafoorunissa (2004) Lignans and tocopherols in Indian sesame cultivars. J Am Oil Chem Soc 81:467–470CrossRefGoogle Scholar
  59. 59.
    Abe C, Ikeda S, Yamashina K (2005) Dietary sesame seeds elevate α-tocopherol concentration in rat brain. J Nutr Sci Vitaminol 51:223–230CrossRefGoogle Scholar
  60. 60.
    Kamal-Eldin A, Pettersson D, Appelqvist LÅ (1995) Sesamin (a compound from sesame oil) increases tocopherol levels in rats fed ad libitum. Lipids 30:499–505CrossRefGoogle Scholar
  61. 61.
    Wu WH, Kang YP, Wang NH, Jou HJ, Wang TA (2006) Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women. J Nutr 136(5): 1270–1275Google Scholar
  62. 62.
    Mak DHF, Po YC, Kam MK (2011) Antioxidant and anti-carcinogenic potentials of sesame lignans. In: Bedigian D (ed) Sesame the genus sesamum. CRC Press, Boca RatonGoogle Scholar
  63. 63.
    Sandra MS, Lilian UT (2011) Sesame seeds and its lignans: metabolism and bioactivities. In: Bedigian D (ed) Sesame the genus Sesamum. CRC Press, Boca RatonGoogle Scholar
  64. 64.
    Matsumara Y, Kita S, Tanida Y, Taguchi S, Morimoto S, Akimoto K, Tanaka T (1998) Antihypertensive effect of sesamin, protection against development and maintenance of hypertension in stroke-prone spontaneously hypertensive rats. Biol Pharm Bull 21:469–473CrossRefGoogle Scholar
  65. 65.
    Chavali SR, Zhong WW, Forse RA (1998) Dietary α-linolenic acid increases TNF-α, and decreases IL-6, IL-10 in response to LPS: effect of sesamin on the Δ-5 desaturation of ω6 and ω3 fatty acids in mice. Prostaglandins Leukot Essent Fat Acids 58(3):185–191CrossRefGoogle Scholar
  66. 66.
    Lim JS, Adachi Y, Takahashi Y, Ide T (2007) Comparative analysis of sesame lignans (sesamin and sesamolin) in affecting hepatic fatty acid metabolism in rats. Br J Nutr 97(1):85–95.  https://doi.org/10.1017/S0007114507252699 CrossRefGoogle Scholar
  67. 67.
    Sirato-Yasumoto S, Katsuta M, Okuyama Y, Takahashi Y, Ide T (2001) Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agric Food Chem 49:2647–2651CrossRefGoogle Scholar
  68. 68.
    Hirose N, Doi F, Ueki T, Akazawa K, Chijiiwa K (1992) Suppressive effect of sesamin against 7, 12-dimethylbenz[a]-anthracene induced rat mammary carcinogenesis. Anticancer Res 12:1259–1265Google Scholar
  69. 69.
    Coulman KD, Liu Z, Quan HW, Michaelides J, Thompson LU (2005) Whole sesame seed is as rich a source of mammalian lignan precursors as whole flaxseed. Nutr Cancer 52:156–165.  https://doi.org/10.1207/s15327914nc5202_6 CrossRefGoogle Scholar
  70. 70.
    Liu Z, Saarinen NM, Thompson LU (2006) Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J Nutr 136:906–912Google Scholar
  71. 71.
    Penalvo JL, Heinonen SM, Aura AM, Adlercreutz H (2005) Dietary sesamin is converted to enterolactone in humans. J Nutr 135:1056–1062Google Scholar
  72. 72.
    Annussek G (2001) Sesame oil in: gale encyclopedia of alternative medicine. Gale Group and Looksmart, DetroitGoogle Scholar
  73. 73.
    Ang ES, Lee ST, Gan CS, See PG, Chan YH, Nag LH, Machin D (2001) Evaluating the role of alternative therapy in burn wound management: randomized trial comparing moist exposed burn ointment with conventional methods in the management of patients with second- degree burns. Med Gen Med 3:2–7Google Scholar
  74. 74.
    Yong YL (1999) Analysis of MEBO cream, Report no. 99033191. Institute of Science and Forensic Medicine, Department of Scientific Services, Health Science Division, SingaporeGoogle Scholar
  75. 75.
    Kamal-Eldin A, Appelqvist LÅ (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701CrossRefGoogle Scholar
  76. 76.
    Burton GW, Traber MG (1990) Vitamin E in antioxidant activity biokinetics and bioavailability. Annu Rev Nutr 10:375–382.  https://doi.org/10.1146/annurev.nu.10.070190.002041 CrossRefGoogle Scholar
  77. 77.
    Burton GW (1994) Vitamin E: molecular and biological function. Proc Nutr Soc 53(2): 251–262CrossRefGoogle Scholar
  78. 78.
    Li D, Saldeen T, Romeo F, Mehta JL (1999) Relative effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation and superoxide dismutase and nitric oxide synthase activity and protein expression in rats. J Cardiovasc Pharmacol Ther 4:219–226CrossRefGoogle Scholar
  79. 79.
    Saldeen T, Engström K, Jokela R, Wallin R (1999) Natural antioxidants and anticarcinogens in nutrition, health and disease. In: Importance of in vitro stability for in vivo effects of fish oils. The Royal Society of Chemistry, Cambridge, UK, Special Publication 240, pp 326–330Google Scholar
  80. 80.
    Qureshi AA, Bradlow BA, Brace L, Manganello J, Peterson DM, Pearce BC, Wright JJK, Gapor A, Elson CE (1995) Response of hypercholesterolemic subjects to administration of tocotrienols. Lipids 30(12):1171–1177CrossRefGoogle Scholar
  81. 81.
    Schwenke DC (2002) Does lack of tocopherols and tocotrienols put women at increased risk of breast cancer? J Nutr Biochem 13(1):2–20CrossRefGoogle Scholar
  82. 82.
    Olcott HS, Emerson OH (1937) Antioxidants and the autoxidation of fats, IX, the antioxidant properties of the tocopherols. J Am Oil Chem Soc 59(6):1008–1009CrossRefGoogle Scholar
  83. 83.
    Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542Google Scholar
  84. 84.
    Liebler DC (1993) The role of metabolism in the antioxidant functions of vitamin E. Crit Rev Toxicol 23:147–169.  https://doi.org/10.3109/10408449309117115 CrossRefGoogle Scholar
  85. 85.
    Dabrowski KJ, Sosulski F (1984) Quantification of free and hydrolizable phenolic acids in seeds by capillary gas liquid chromatography. J Agric Food Chem 32(1):123–127CrossRefGoogle Scholar
  86. 86.
    Feroj-Hasan AFM, Begu S, Furumoto T, Fukui H (2000) A new chlorinated red napthaquinone from roots of Sesamum indicum. Biosci Biotechnol Biochem 64:873–874.  https://doi.org/10.1271/bbb.64.873 CrossRefGoogle Scholar
  87. 87.
    Lyon CK (1972) Sesame, present knowledge of composition and use. J Am Oil Chem Soc 49:245–249CrossRefGoogle Scholar
  88. 88.
    Shimoda T, Takabayashi J, Ashira W, Takafuji (1997) Response of predatory insect Scolothrips takahashi towards herbivore induced plant volatiles under laboratory and field conditions. J Chem Ecol 23:2033–2048CrossRefGoogle Scholar
  89. 89.
    Salunkhe DK, Chavan JK, Adsule RN, Kadam SS (1991) World oilseeds: chemistry, technology and utilization. Springer, New York, pp 1–554Google Scholar
  90. 90.
    Van Rensburg SJ, Daniels WM, Van Zyl JM, Taljaard JJ (2000) A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metab Brain Dis 15:257–265CrossRefGoogle Scholar
  91. 91.
    Bouic PJ (2002) Sterols and sterolins: new drugs for the immune system? Drug Discov Today 7:775–778CrossRefGoogle Scholar
  92. 92.
    Zhao W, Miao X, Jia S, Pan Y, Huang Y (2005) Isolation and characterization of microsatellite loci from the mulberry Morus L. Plant Sci 168:519–525CrossRefGoogle Scholar
  93. 93.
    Moreau RA, Whitaker BD, Hicks Kevin B (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500CrossRefGoogle Scholar
  94. 94.
    Mohamed HM, Awatif II (1998) The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chem 62:269–276CrossRefGoogle Scholar
  95. 95.
    Gharby S, Harhar H, Bouzoubaa Z, Asdadi A, El Yadini A, Charrouf Z (2015) Chemical characterization and oxidative stability of seed and oil of sesame grown in Morocco. J Saudi Soc Agric Sci 16:105–111.  https://doi.org/10.1016/j.jssas.2015.03.004 Google Scholar
  96. 96.
    Pegel KH (1997) The importance of sitosterol and sitosterolin in human and animal nutrition. S Afr J Sci 93:263–268Google Scholar
  97. 97.
    Nieman DC (1994) Exercise, infection and immunity. Int J Sports Med 15:131–141.  https://doi.org/10.1055/s-2007-1021128 CrossRefGoogle Scholar
  98. 98.
    de Boland AR, Garner GB, O’Dell BL (1975) Identification and properties of “phytate” in cereal grains and oilseed products. J Agric Food Chem 23:1186–1189CrossRefGoogle Scholar
  99. 99.
    Graf E, Dintzis FR (1982) High-performance liquid chromatographic method for the determination of phytate. Anal Biochem 119:413–417CrossRefGoogle Scholar
  100. 100.
    Urbano G, López-Jurado M, Aranda P, Vidal-Valverde C, Tenorio E, Porres J (2000) The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem 56:283–294CrossRefGoogle Scholar
  101. 101.
    Kuroda Y, Shamsuddin AM (1995) Inositol phosphates have novel anticancer function. J Nutr 125:725S–732SGoogle Scholar
  102. 102.
    Gunstone F, Harwood JL, Padley FB (1994) The lipid handbook, 2nd edn. Chapman and Hall, London, pp 47–208Google Scholar
  103. 103.
    Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70(3 Suppl):560S–569SGoogle Scholar
  104. 104.
    Kankaanpaa P, Sutas Y, Salminen S, Lichtenstein A, Isolauri E (1999) Dietary fatty acids and allergy. Ann Med 31:282–287CrossRefGoogle Scholar
  105. 105.
    Kamal-Eldin A, Appelqvist LÅ (1994) Variation in the composition of sterols, tocopherols and lignans in seed oils from four Sesamum species. J Am Oil Chem Soc 71:149–156CrossRefGoogle Scholar
  106. 106.
    Spencer GF, Herb SF, Gormisky PJ (1976) Fatty acid composition as a basis for identification of commercial fats and oils. J Am Oil Chem Soc 53:94–96CrossRefGoogle Scholar
  107. 107.
    Shahidi F, Tan Z (2011) Physiological effects of sesame bioactive and antioxidant compounds. In: Bedigian D (ed) Sesame the genus sesamum. CRC Press, Boca RatonGoogle Scholar
  108. 108.
    Uzun B, Arslan C, Furat S (2008) Variation in fatty acid compositions, oil content and oil yield in germplasm collection of sesame (Sesamum indicum L.) J Am Oil Chem Soc 85:1135–1142CrossRefGoogle Scholar
  109. 109.
    Mondal N, Bhat KV, Srivastava PS (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87(11):1263–1269CrossRefGoogle Scholar
  110. 110.
    Bhunia RK, Chakraborty A, Kaur R et al (2015) Analysis of fatty acid and lignan composition of Indian germplasm of sesame in terms of their nutritional merits. J Am Oil Chem Soc 92: 65–76CrossRefGoogle Scholar
  111. 111.
    Aluko R (2012) Bioactive peptides. In: Functional foods and nutraceuticals, Food science text series. Springer, New York, pp 37–61CrossRefGoogle Scholar
  112. 112.
    Dench JE, Rivas N, Caygill JC (1981) Selected functional properties of sesame (Sesamum indicum L.). Flour and two protein isolates. J Sci Food Agric 32:557–564.  https://doi.org/10.1002/jsfa.2740320606 CrossRefGoogle Scholar
  113. 113.
    Frokjaer S (1994) Use of hydrolysates for protein supplementation. Food Technol 48:86–88Google Scholar
  114. 114.
    Giese J (1994) Proteins as ingredients: types, functions, applications. Food Technol 48:50–60Google Scholar
  115. 115.
    Sánchez A, Vázquez A (2017) Bioactive peptides: a review. Food Qual Saf 1(1):29–46.  https://doi.org/10.1093/fqs/fyx006 CrossRefGoogle Scholar
  116. 116.
    Bandyopadhyay K, Ghosh S (2002) Preparation and characterization of papain-modified sesame (Sesamum indicum L.) protein isolates. J Agric Food Chem 50(23):6854–6857CrossRefGoogle Scholar
  117. 117.
    Saha S, Walia S, Kundu A, Pathak N (2013) Effect of mobile phase on resolution of the isomers and homologues of tocopherols on a triacontyl stationary phase. Anal Bioanal Chem 405:9285–9295.  https://doi.org/10.1007/s00216-013-7336-9 CrossRefGoogle Scholar
  118. 118.
    Pathak N, Rai AK, Saha S, Walia SK, Sen SK, Bhat KV (2014) Quantitative dissection of antioxidative bioactive components in cultivated and wild sesame germplasm reveals potentially exploitable wide genetic variability. J Crop Sci Biotechnol 17(3):127–139CrossRefGoogle Scholar
  119. 119.
    Ashri A, Downey RK, Robbelen G (1989) Brassica species. In: Ashri A, Robbelen G, Downey RK (eds) Oil crops of the world. McGraw-Hill, New York, pp 339–382Google Scholar
  120. 120.
    Pathak N, Rai AK, Kumari R, Thapa A, Bhat KV (2014) Sesame crop: an underexploited oilseed holds tremendous potential for enhanced food value. Agric Sci 5(6):519–529.  https://doi.org/10.4236/as.2014.56054 Google Scholar
  121. 121.
    Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39.  https://doi.org/10.1186/gb-2014-15-2-r39 CrossRefGoogle Scholar
  122. 122.
    Wei X, Zhu X, Yu J, Wang L, Zhang Y, Li D, Zhou R, Zhang X (2016) Identification of sesame genomic variations from genome comparison of landrace and variety. Front Plant Sci 7:1169.  https://doi.org/10.3389/fpls.2016.01169 Google Scholar
  123. 123.
    Wei X et al (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609.  https://doi.org/10.1038/ncomms9609 CrossRefGoogle Scholar
  124. 124.
    Memelink J (2004) Tailoring the plant metabolome without a loose stitch. Trends Plant Sci 7:305–307.  https://doi.org/10.1016/j.tplants.2005.05.006 Google Scholar
  125. 125.
    Hall C, Tulbek MC, Xu Y (2006) Flaxseed. Adv Food Nutr Res 51:1–97CrossRefGoogle Scholar
  126. 126.
    Suh MC, Kim MJ, Hur CG, Bae JM, Park YI, Chung CH, Kang CW, Ohlrogge JB (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52(6):1107–1123CrossRefGoogle Scholar
  127. 127.
    Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178(6):510–516CrossRefGoogle Scholar
  128. 128.
    Pathak N, Bhaduri A, Bhat KV, Rai AK (2015) Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species – a domestication footprint. Plant Biol 17(5):1039–1046.  https://doi.org/10.1111/plb.12327 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Botany, Deshbandhu CollegeUniversity of DelhiDelhiIndia
  2. 2.Cluster Innovation CentreUniversity of DelhiDelhiIndia
  3. 3.Department of BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations