Advertisement

Bioactive Lipids

  • Luis Vázquez
  • Marta Corzo-Martínez
  • Pablo Arranz-Martínez
  • Elvira Barroso
  • Guillermo Reglero
  • Carlos Torres
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Historically, lipids have been considered just as a source of energy for our bodies and as the basic unit of membranes. The discovery of the platelet-activating factor in 1979 as one of the first biologically active phospholipids was a relevant landmark in this field. Since then, some unique biological activities have been assigned to every single lipid class. For example, lipids, as small hydrophobic molecules, are extraordinary as chemical messengers to send information between organelles and to other cells. Additionally, polar lipids that contain hydrophobic and hydrophilic regions can interact distinctly with membrane proteins modulating their activities, while glycosphingolipids including their structure complex carbohydrates can play important roles in the immune system. Therefore, in this chapter, many relevant biological functions of some lipid classes from dietary sources will be extensively reviewed.

Keywords

Free fatty acids Glyceryl ethers Phospholipids Isoprenoids Phenolic lipids Lipid delivery systems 

Notes

Acknowledgments

This study has been funded by the Comunidad Autónoma de Madrid (ALIBIRD, project number S2013/ABI-2728) and by Ministerio de Economia y Competitividad (project number AGL2016-76736-C3-1-R). Pablo Arranz-Martínez and Marta Corzo-Martínez also thank Ministerio de Economia y Competitividad and the European Social Fund: BES-2014-070395 for a predoctoral FPU grant and a Juan de la Cierva contract, respectively.

References

  1. 1.
    Mouritsen OG (2005) Prologue: lipidomics – a science beyond stamp collection. In: Life – as a matter of fat: the emerging science of lipidomics. Springer, Berlin/Heidelberg, pp 1–5.  https://doi.org/10.1007/3-540-27076-0_1
  2. 2.
    Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12(3):829–875.  https://doi.org/10.1111/j.1582-4934.2008.00281.xCrossRefGoogle Scholar
  3. 3.
    Aluko R (2012) Bioactive lipids. In: Functional foods and nutraceuticals. Springer, New York, pp 23–36.  https://doi.org/10.1007/978-1-4614-3480-1_2CrossRefGoogle Scholar
  4. 4.
    Roby MHH (2017) Synthesis and characterization of phenolic lipids, Ch. 04. In: Soto-Hernandez M, Palma-Tenango M, Garcia-Mateos MR (eds) Phenolic compounds – natural sources, importance and applications. InTech, Rijeka.  https://doi.org/10.5772/66891Google Scholar
  5. 5.
    Svennerholm L (1977) The nomenclature of lipids. IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Eur J Biochem 79:11–21CrossRefGoogle Scholar
  6. 6.
    Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL (2013) Short chain fatty acids and their receptors: new metabolic targets. Transl Res 161(3):131–140CrossRefGoogle Scholar
  7. 7.
    Bracco U (1994) Effect of triglyceride structure on fat absorption. Am J Clin Nutr 60(6):1002S–1009SCrossRefGoogle Scholar
  8. 8.
    Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233(6):674–688.  https://doi.org/10.3181/0711-MR-311CrossRefGoogle Scholar
  9. 9.
    Simopoulos AP (2001) Evolutionary aspects of diet and essential fatty acids. In: Fatty acids and lipids-new findings, vol 88. Karger Publishers, Basel, pp 18–27CrossRefGoogle Scholar
  10. 10.
    Simopoulos A (2016) An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Forum Nutr 8(3):128Google Scholar
  11. 11.
    Dumm INDG, Brenner RR (1975) Oxidative desaturation of α-linolenic, linoleic, and stearic acids by human liver microsomes. Lipids 10(6):315–317CrossRefGoogle Scholar
  12. 12.
    Biesalski H-K (2005) Meat as a component of a healthy diet–are there any risks or benefits if meat is avoided in the diet? Meat Sci 70(3):509–524CrossRefGoogle Scholar
  13. 13.
    Rangel-Huerta OD, Gil A (2017) Omega 3 fatty acids in cardiovascular disease risk factors: an updated systematic review of randomised clinical trials. Clin Nutr.  https://doi.org/10.1016/j.clnu.2017.05.015
  14. 14.
    Bjerregaard P, Pedersen H, Mulvad G (2000) The associations of a marine diet with plasma lipids, blood glucose, blood pressure and obesity among the Inuit in Greenland. Eur J Clin Nutr 54(9):732CrossRefGoogle Scholar
  15. 15.
    Ebbesson SO, Kennish J, Ebbesson L, Go O, Yeh J (1999) Diabetes is related to fatty acid imbalance in Eskimos. Int J Circumpolar Health 58(2):108–119Google Scholar
  16. 16.
    Dyall SC (2011) Methodological issues and inconsistencies in the field of omega-3 fatty acids research. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 85(5):281–285CrossRefGoogle Scholar
  17. 17.
    Kaur G, Cameron-Smith D, Garg M, Sinclair AJ (2011) Docosapentaenoic acid (22: 5n-3): a review of its biological effects. Prog Lipid Res 50(1):28–34CrossRefGoogle Scholar
  18. 18.
    Cansev M, Wurtman R (2007) Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils. Neuroscience 148(2):421–431CrossRefGoogle Scholar
  19. 19.
    Yanes O, Clark J, Wong DM, Patti GJ, Sánchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6(6):411–417. http://www.nature.com/nchembio/journal/v6/n6/suppinfo/nchembio.364_S1.htmlCrossRefGoogle Scholar
  20. 20.
    Katakura M, Hashimoto M, Okui T, Shahdat HM, Matsuzaki K, Shido O (2013) Omega-3 polyunsaturated fatty acids enhance neuronal differentiation in cultured rat neural stem cells. Stem Cells Int 2013:9.  https://doi.org/10.1155/2013/490476CrossRefGoogle Scholar
  21. 21.
    Samieri C, Feart C, Proust-Lima C, Peuchant E, Tzourio C, Stapf C, Berr C, Barberger-Gateau P (2011) Olive oil consumption, plasma oleic acid, and stroke incidence the three-city study. Neurology 77:418.  https://doi.org/10.1212/WNL.0b013e318220abebCrossRefGoogle Scholar
  22. 22.
    Samieri C, Féart C, Letenneur L, Dartigues J-F, Pérès K, Auriacombe S, Peuchant E, Delcourt C, Barberger-Gateau P (2008) Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr 88(3):714–721CrossRefGoogle Scholar
  23. 23.
    Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351CrossRefGoogle Scholar
  24. 24.
    Serini S, Bizzarro A, Piccioni E, Fasano E, Rossi C, Lauria A, Cittadini AR, Masullo C, Calviello G (2012) EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer’s patients. Curr Alzheimer Res 9(8):913–923CrossRefGoogle Scholar
  25. 25.
    Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Factories 11(1):96.  https://doi.org/10.1186/1475-2859-11-96CrossRefGoogle Scholar
  26. 26.
    Surette ME, Edens M, Chilton FH, Tramposch KM (2004) Dietary echium oil increases plasma and neutrophil long-chain (n-3) fatty acids and lowers serum triacylglycerols in hypertriglyceridemic humans. J Nutr 134(6):1406–1411CrossRefGoogle Scholar
  27. 27.
    Harris WS, Lemke SL, Hansen SN, Goldstein DA, DiRienzo MA, Su H, Nemeth MA, Taylor ML, Ahmed G, George C (2008) Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker. Lipids 43(9):805–811CrossRefGoogle Scholar
  28. 28.
    Lenihan-Geels G, Bishop KS, Ferguson LR (2013) Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Forum Nutr 5(4):1301–1315Google Scholar
  29. 29.
    Kuhnt K, Degen C, Jaudszus A, Jahreis G (2012) Searching for health beneficial n-3 and n-6 fatty acids in plant seeds. Eur J Lipid Sci Technol 114(2):153–160CrossRefGoogle Scholar
  30. 30.
    Kapoor R, Huang Y-S (2006) Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Curr Pharm Biotechnol 7(6):531–534CrossRefGoogle Scholar
  31. 31.
    Mizock BA (2010) Immunonutrition and critical illness: an update. Nutrition 26(7):701–707CrossRefGoogle Scholar
  32. 32.
    Olendzki BC, Leung K, Van Buskirk S, Reed G, Zurier RB (2011) Treatment of rheumatoid arthritis with marine and botanical oils: Influence on serum lipids. Evid Based Complement Alternat Med 2011:827286CrossRefGoogle Scholar
  33. 33.
    Pottel L, Lycke M, Boterberg T, Foubert I, Pottel H, Duprez F, Goethals L, Debruyne PR (2014) Omega-3 fatty acids: physiology, biological sources and potential applications in supportive cancer care. Phytochem Rev 13(1):223–244CrossRefGoogle Scholar
  34. 34.
    Yang Z-H, Miyahara H, Hatanaka A (2011) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay mice with genetic type 2 diabetes. Lipids Health Dis 10(1):120.  https://doi.org/10.1186/1476-511x-10-120CrossRefGoogle Scholar
  35. 35.
    Lopez-Miranda J, Perez-Jimenez F, Ros E, De Caterina R, Badimon L, Covas MI, Escrich E, Ordovas JM, Soriguer F, Abia R, de la Lastra CA, Battino M, Corella D, Chamorro-Quirós J, Delgado-Lista J, Giugliano D, Esposito K, Estruch R, Fernandez-Real JM, Gaforio JJ, La Vecchia C, Lairon D, López-Segura F, Mata P, Menéndez JA, Muriana FJ, Osada J, Panagiotakos DB, Paniagua JA, Pérez-Martinez P (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr Metab Cardiovasc Dis 20:284.  https://doi.org/10.1016/j.numecd.2009.12.007CrossRefGoogle Scholar
  36. 36.
    Ducheix S, Montagner A, Polizzi A, Lasserre F, Régnier M, Marmugi A, Benhamed F, Bertrand-Michel J, Mselli-Lakhal L, Loiseau N (2017) Dietary oleic acid regulates hepatic lipogenesis through a liver X receptor-dependent signaling. PLoS One 12(7):e0181393CrossRefGoogle Scholar
  37. 37.
    Valenzuela A, Delplanque B, Tavella M (2011) Stearic acid: a possible substitute for trans fatty acids from industrial origin. Grasas y Aceites 62:131–138Google Scholar
  38. 38.
    Emken EA (1994) Metabolism of dietary stearic acid relative to other fatty acids in human subjects. Am J Clin Nutr 60(6):1023S–1028SCrossRefGoogle Scholar
  39. 39.
    Hunter JE, Zhang J, Kris-Etherton PM (2010) Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am J Clin Nutr 91(1):46–63CrossRefGoogle Scholar
  40. 40.
    Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60(6):986S–990SCrossRefGoogle Scholar
  41. 41.
    Fave G, Coste T, Armand M (2004) Physicochemical properties of lipids: new strategies to manage fatty acid bioavailability. Cell Mol Biol 50(7):815–832Google Scholar
  42. 42.
    Sørensen LB, Cueto HT, Andersen MT, Bitz C, Holst JJ, Rehfeld JF, Astrup A (2008) The effect of salatrim, a low-calorie modified triacylglycerol, on appetite and energy intake. Am J Clin Nutr 87(5):1163–1169CrossRefGoogle Scholar
  43. 43.
    Huang W-C, Tsai T-H, Chuang L-T, Li Y-Y, Zouboulis CC, Tsai P-J (2014) Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J Dermatol Sci 73(3):232–240CrossRefGoogle Scholar
  44. 44.
    Dayrit FM (2015) The properties of lauric acid and their significance in coconut oil. J Am Oil Chem Soc 92(1):1–15CrossRefGoogle Scholar
  45. 45.
    Temme E, Mensink RP, Hornstra G (1996) Comparison of the effects of diets enriched in lauric, palmitic, or oleic acids on serum lipids and lipoproteins in healthy women and men. Am J Clin Nutr 63(6):897–903CrossRefGoogle Scholar
  46. 46.
    Alves NFB, Queiroz TM, Almeida Travassos R, Magnani M, Andrade Braga V (2017) Acute treatment with Lauric acid reduces blood pressure and oxidative stress in spontaneously hypertensive rats. Basic Clin Pharmacol Toxicol 120(4):348–353CrossRefGoogle Scholar
  47. 47.
    Lappano R, Sebastiani A, Cirillo F, Rigiracciolo DC, Galli GR, Curcio R, Malaguarnera R, Belfiore A, Cappello AR, Maggiolini M (2017) The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Dis 3:17063CrossRefGoogle Scholar
  48. 48.
    Law KS, Azman N, Omar EA, Musa MY, Yusoff NM, Sulaiman SA, Hussain NHN (2014) The effects of virgin coconut oil (VCO) as supplementation on quality of life (QOL) among breast cancer patients. Lipids Health Dis 13(1):139CrossRefGoogle Scholar
  49. 49.
    Silberstein T, Burg A, Blumenfeld J, Sheizaf B, Tzur T, Saphier O (2013) Saturated fatty acid composition of human milk in Israel: a comparison between Jewish and Bedouin women. Israel Med Assoc J 15(4):156–159Google Scholar
  50. 50.
    Silva RB, Silva-Junior EV, Rodrigues LC, Andrade LH, Silva SI, Harand W, Oliveira AF (2015) A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae. An Acad Bras Cienc 87(3):1701–1709CrossRefGoogle Scholar
  51. 51.
    Zock PL, de Vries JH, Katan MB (1994) Impact of myristic acid versus palmitic acid on serum lipid and lipoprotein levels in healthy women and men. Arterioscler Thromb Vasc Biol 14(4):567–575CrossRefGoogle Scholar
  52. 52.
    Mensink RP, Zock PL, Kester AD, Katan MB (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77(5):1146–1155CrossRefGoogle Scholar
  53. 53.
    Katan MB, Zock PL, Mensink RP (1994) Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 60(6):1017S–1022SCrossRefGoogle Scholar
  54. 54.
    Takato T, Iwata K, Murakami C, Wada Y, Sakane F (2017) Chronic administration of myristic acid improves hyperglycaemia in the Nagoya–Shibata–Yasuda mouse model of congenital type 2 diabetes. Diabetologia 60(10):2076–2083.  https://doi.org/10.1007/s00125-017-4366-4CrossRefGoogle Scholar
  55. 55.
    Ericson U, Hellstrand S, Brunkwall L, Schulz C-A, Sonestedt E, Wallström P, Gullberg B, Wirfält E, Orho-Melander M (2015) Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. Am J Clin Nutr.  https://doi.org/10.3945/ajcn.114.103010
  56. 56.
    Akoh CC (2017) Food lipids: chemistry, nutrition, and biotechnology. CRC Press, Boca RatonCrossRefGoogle Scholar
  57. 57.
    Marten B, Pfeuffer M, Schrezenmeir J (2006) Medium-chain triglycerides. Int Dairy J 16(11):1374–1382CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Liu Y, Wang J, Zhang R, Jing H, Yu X, Zhang Y, Xu Q, Zhang J, Zheng Z (2010) Medium-and long-chain triacylglycerols reduce body fat and blood triacylglycerols in hypertriacylglycerolemic, overweight but not obese, Chinese individuals. Lipids 45(6):501–510CrossRefGoogle Scholar
  59. 59.
    Nagao K, Yanagita T (2010) Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol Res 61(3):208–212.  https://doi.org/10.1016/j.phrs.2009.11.007CrossRefGoogle Scholar
  60. 60.
    Osborn H, Akoh C (2002) Structured lipids-novel fats with medical, nutraceutical, and food applications. Compr Rev Food Sci Food Saf 1(3):110–120CrossRefGoogle Scholar
  61. 61.
    Vázquez L, Akoh CC (2010) Fractionation of short and medium chain fatty acid ethyl esters from a blend of oils via ethanolysis and short-path distillation. J Am Oil Chem Soc 87(8):917–928CrossRefGoogle Scholar
  62. 62.
    Lieberman S, Enig MG, Preuss HG (2006) A review of monolaurin and lauric acid: natural virucidal and bactericidal agents. Altern Complement Ther 12(6):310–314CrossRefGoogle Scholar
  63. 63.
    Ruzin A, Novick RP (2000) Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J Bacteriol 182(9):2668–2671CrossRefGoogle Scholar
  64. 64.
    Enig MG (1998) Lauricoils as antimicrobial agents: theory of effect, scientific rationale. Nutr Foods AIDS 17:81Google Scholar
  65. 65.
    De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1):84–96CrossRefGoogle Scholar
  66. 66.
    Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242.  https://doi.org/10.1038/nature11552CrossRefGoogle Scholar
  67. 67.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446CrossRefGoogle Scholar
  68. 68.
    Plaisancie P, Dumoulin V, Chayvialle J, Cuber J (1996) Luminal peptide YY-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol 151(3):421–429CrossRefGoogle Scholar
  69. 69.
    Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584(11):2381–2386CrossRefGoogle Scholar
  70. 70.
    Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591CrossRefGoogle Scholar
  71. 71.
    De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2016) Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 24(1):151–157CrossRefGoogle Scholar
  72. 72.
    Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567CrossRefGoogle Scholar
  73. 73.
    Besten G, Lange K, Havinga R, Dijk TH, Gerding A, Eunen K, Muller M, Groen AK, Hooiveld GJ, Bakker BM, Reijngoud DJ (2013) Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 305:G900.  https://doi.org/10.1152/ajpgi.00265.2013CrossRefGoogle Scholar
  74. 74.
    Boets E, Deroover L, Houben E, Vermeulen K, Gomand SV, Delcour JA, Verbeke K (2015) Quantification of in vivo colonic short chain fatty acid production from inulin. Forum Nutr 7(11):8916–8929Google Scholar
  75. 75.
    Besten G, Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325.  https://doi.org/10.1194/jlr.R036012CrossRefGoogle Scholar
  76. 76.
    Inoue D, Tsujimoto G, Kimura I (2014) Regulation of energy homeostasis by GPR41. Front Endocrinol (Lausanne) 5:81Google Scholar
  77. 77.
    Kimura I, Inoue D, Hirano K, Tsujimoto G (2014) The SCFA receptor GPR43 and energy metabolism. Front Endocrinol (Lausanne) 5:85Google Scholar
  78. 78.
    Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829CrossRefGoogle Scholar
  79. 79.
    Cani PD (2014) Metabolism in 2013: the gut microbiota manages host metabolism. Nat Rev Endocrinol 10:74.  https://doi.org/10.1038/nrendo.2013.240CrossRefGoogle Scholar
  80. 80.
    Ohira H, Tsutsui W, Fujioka Y (2017) Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb.  https://doi.org/10.5551/jat.RV17006
  81. 81.
    Kahouli I, Malhotra M, Tomaro-Duchesneau C, Saha S, Marinescu D, Rodes L, Alaoui-Jamali M, Prakash S (2015) Screening and in-vitro analysis of Lactobacillus reuteri strains for short chain fatty acids production, stability and therapeutic potentials in colorectal cancer. J Bioequivalence Bioavailab 7(1):39Google Scholar
  82. 82.
    Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:255.  https://doi.org/10.1016/j.mib.2013.06.003CrossRefGoogle Scholar
  83. 83.
    Serpa J, Caiado F, Carvalho T, Torre C, Goncalves LG, Casalou C, Lamosa P, Rodrigues M, Zhu Z, Lam EW, Dias S (2010) Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J Biol Chem 285:39211.  https://doi.org/10.1074/jbc.M110.156026CrossRefGoogle Scholar
  84. 84.
    Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M (2017) The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol 54(6): 4432–4451.  https://doi.org/10.1007/s12035-016-0004-2CrossRefGoogle Scholar
  85. 85.
    Tang Y, Chen Y, Jiang H, Robbins GT, Nie D (2011) G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer 128(4):847–856CrossRefGoogle Scholar
  86. 86.
    Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R (2012) Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut.  https://doi.org/10.1136/gutjnl-2012-303611
  87. 87.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166CrossRefGoogle Scholar
  88. 88.
    Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15(12):2809–2824CrossRefGoogle Scholar
  89. 89.
    Scheppach W, Sommer H, Kirchner T, Paganelli G-M, Bartram P, Christl S, Richter F, Dusel G, Kasper H (1992) Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103(1):51–56CrossRefGoogle Scholar
  90. 90.
    Havenaar R (2011) Intestinal health functions of colonic microbial metabolites: a review. Benef Microbes 2:103.  https://doi.org/10.3920/bm2011.0003CrossRefGoogle Scholar
  91. 91.
    Wong JM, De Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243CrossRefGoogle Scholar
  92. 92.
    Tarini J, Wolever TM (2010) The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 35(1):9–16CrossRefGoogle Scholar
  93. 93.
    Van Hoek MJ, Merks RM (2017) Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst Biol 11(1):56CrossRefGoogle Scholar
  94. 94.
    Moens F, Verce M, De Vuyst L (2017) Lactate-and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Int J Food Microbiol 241:225–236CrossRefGoogle Scholar
  95. 95.
    Argenzio R, Meuten D (1991) Short-chain fatty acids induce reversible injury of porcine colon. Dig Dis Sci 36(10):1459–1468CrossRefGoogle Scholar
  96. 96.
    Rodenburg W, Keijer J, Kramer E, Vink C, van der Meer R, Bovee-Oudenhoven IM (2008) Impaired barrier function by dietary fructo-oligosaccharides (FOS) in rats is accompanied by increased colonic mitochondrial gene expression. BMC Genomics 9(1):144CrossRefGoogle Scholar
  97. 97.
    Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Hennekens CH, Hennekens CH, Willett WC, Stampfer MJ, Colditz GA, Willett WC, Sampson LA, Rosner BA (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341(8845):581–585.  https://doi.org/10.1016/0140-6736(93)90350-PCrossRefGoogle Scholar
  98. 98.
    Aldai N, de Renobales M, Barron LJR, Kramer JKG (2013) What are the trans fatty acids issues in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable oils, and synthetic supplements. Eur J Lipid Sci Technol 115(12):1378–1401.  https://doi.org/10.1002/ejlt.201300072CrossRefGoogle Scholar
  99. 99.
    Bassett CMC, Edel AL, Patenaude AF, McCullough RS, Blackwood DP, Chouinard PY, Paquin P, Lamarche B, Pierce GN (2010) Dietary vaccenic acid has Antiatherogenic effects in LDLr−/− mice. J Nutr 140(1):18–24.  https://doi.org/10.3945/jn.109.105163CrossRefGoogle Scholar
  100. 100.
    Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85(2):295–350CrossRefGoogle Scholar
  101. 101.
    Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C (2017) Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: a review. Biochimie.  https://doi.org/10.1016/j.biochi.2017.08.006
  102. 102.
    Precht D, Molkentin J (1995) Trans fatty acids: implications for health, analytical methods, incidence in edible fats and intake. Mol Nutr Food Res 39(5–6):343–374Google Scholar
  103. 103.
    Vahmani P, Meadus W, Turner T, Duff P, Rolland D, Mapiye C, Dugan M (2015) Individual trans 18: 1 isomers are metabolised differently and have distinct effects on lipogenesis in 3T3-L1 adipocytes. Lipids 50(2):195–204CrossRefGoogle Scholar
  104. 104.
    Vahmani P, Meadus WJ, Duff P, Rolland DC, Dugan ME (2017) Comparing the lipogenic and cholesterolgenic effects of individual trans-18: 1 isomers in liver cells. Eur J Lipid Sci Technol 119(3).  https://doi.org/10.1002/ejlt.201600162
  105. 105.
    Bendsen NT, Christensen R, Bartels EM, Astrup A (2011) Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies. Eur J Clin Nutr 65(7):773CrossRefGoogle Scholar
  106. 106.
    de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978.  https://doi.org/10.1136/bmj.h3978CrossRefGoogle Scholar
  107. 107.
    Brouwer IA, World Health Organization (2016) Effect of trans-fatty acid intake on blood lipids and lipoproteins: a systematic review and meta-regression analysis. World Health Organization, GenevaGoogle Scholar
  108. 108.
    Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C (2017) Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: a review. Biochimie 141:107CrossRefGoogle Scholar
  109. 109.
    Dilzer A, Park Y (2012) Implication of conjugated linoleic acid (CLA) in human health. Crit Rev Food Sci Nutr 52:488.  https://doi.org/10.1080/10408398.2010.501409CrossRefGoogle Scholar
  110. 110.
    McCrorie TA, Keaveney EM, Wallace JM, Binns N, Livingstone MBE (2011) Human health effects of conjugated linoleic acid from milk and supplements. Nutr Res Rev 24(2):206–227CrossRefGoogle Scholar
  111. 111.
    Park Y (2014) Conjugated linoleic acid in human health effects on weight control. In Watson RR (ed) Nutrition in the prevention and treatment of abdominal obesity, Elsevier, London, pp 429–446CrossRefGoogle Scholar
  112. 112.
    Bauman DE, Corl BA, Peterson DG (2003) The biology of conjugated linoleic acids in ruminants. Adv Conjug Linoleic Acid Res 2:146–173Google Scholar
  113. 113.
    Kim JH, Kim Y, Kim YJ, Park Y (2016) Conjugated linoleic acid: potential health benefits as a functional food ingredient. Annu Rev Food Sci Technol 7(1):221–244.  https://doi.org/10.1146/annurev-food-041715-033028CrossRefGoogle Scholar
  114. 114.
    Viladomiu M, Hontecillas R, Bassaganya-Riera J (2016) Modulation of inflammation and immunity by dietary conjugated linoleic acid. Eur J Pharmacol 785:87–95CrossRefGoogle Scholar
  115. 115.
    Terpstra AHM, Javadi M, Beynen AC, Kocsis S, Lankhorst AE, Lemmens AG, Mohede ICM (2003) Dietary conjugated linoleic acids as free fatty acids and triacylglycerols similarly affect body composition and energy balance in mice. J Nutr 133(10):3181–3186CrossRefGoogle Scholar
  116. 116.
    Park Y, Albright KJ, Storkson JM, Liu W, Cook ME, Pariza MW (1999) Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids 34(3):243–248.  https://doi.org/10.1007/s11745-999-0359-7CrossRefGoogle Scholar
  117. 117.
    Malpuech-Brugère C, Verboeket-van de Venne WPHG, Mensink RP, Arnal M-A, Morio B, Brandolini M, Saebo A, Lassel TS, Chardigny JM, Sébédio JL, Beaufrère B (2004) Effects of two conjugated linoleic acid isomers on body fat mass in overweight humans. Obes Res 12(4):591–598.  https://doi.org/10.1038/oby.2004.68CrossRefGoogle Scholar
  118. 118.
    Risérus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25(9):1516–1521.  https://doi.org/10.2337/diacare.25.9.1516CrossRefGoogle Scholar
  119. 119.
    Onakpoya IJ, Posadzki PP, Watson LK, Davies LA, Ernst E (2012) The efficacy of long-term conjugated linoleic acid (CLA) supplementation on body composition in overweight and obese individuals: a systematic review and meta-analysis of randomized clinical trials. Eur J Nutr 51(2):127–134CrossRefGoogle Scholar
  120. 120.
    Yang J, Wang H-P, Zhou L-M, Zhou L, Chen T, Qin L-Q (2015) Effect of conjugated linoleic acid on blood pressure: a meta-analysis of randomized, double-blind placebo-controlled trials. Lipids Health Dis 14(1):11.  https://doi.org/10.1186/s12944-015-0010-9CrossRefGoogle Scholar
  121. 121.
    Ip C, Chin SF, Scimeca JA, Pariza MW (1991) Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res 51(22):6118–6124Google Scholar
  122. 122.
    Pariza MW, Park Y, Cook ME (1999) Conjugated linoleic acid and the control of cancer and obesity. Toxicol Sci 52(Suppl 1):107–110CrossRefGoogle Scholar
  123. 123.
    Ip C, Dong Y, Ip MM, Banni S, Carta G, Angioni E, Murru E, Spada S, Melis MP, Saebo A (2002) Conjugated linoleic acid isomers and mammary cancer prevention. Nutr Cancer 43(1):52–58CrossRefGoogle Scholar
  124. 124.
    Arab A, Akbarian S, Ghiyasvand R, Miraghajani M (2016) The effects of conjugated linoleic acids on breast cancer: a systematic review. Adv Biomed Res 5(1):115–115.  https://doi.org/10.4103/2277-9175.185573CrossRefGoogle Scholar
  125. 125.
    Hennessy AA, Ross RP, Devery R, Stanton C (2011) The health promoting properties of the conjugated isomers of α-Linolenic acid. Lipids 46(2):105–119.  https://doi.org/10.1007/s11745-010-3501-5CrossRefGoogle Scholar
  126. 126.
    Białek A, Teryks M, Tokarz A (2014) Conjugated linolenic acids (CLnA, super CLA)–natural sources and biological activity. Postepy hig med doswiadczalnej (Online) 68:1238–1250CrossRefGoogle Scholar
  127. 127.
    Harzallah A, Hammami M, Kępczyńska MA, Hislop DC, Arch JRS, Cawthorne MA, Zaibi MS (2016) Comparison of potential preventive effects of pomegranate flower, peel and seed oil on insulin resistance and inflammation in high-fat and high-sucrose diet-induced obesity mice model. Arch Physiol Biochem 122(2):75–87.  https://doi.org/10.3109/13813455.2016.1148053CrossRefGoogle Scholar
  128. 128.
    Boussetta T, Raad H, Lettéron P, Gougerot-Pocidalo M-A, Marie J-C, Driss F, El-Benna J (2009) Punicic acid a conjugated linolenic acid inhibits TNFα-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats. PLoS One 4(7):e6458CrossRefGoogle Scholar
  129. 129.
    Schubert SY, Neeman I, Resnick N (2002) A novel mechanism for the inhibition of NF-κB activation in vascular endothelial cells by natural antioxidants. FASEB J 16(14):1931–1933CrossRefGoogle Scholar
  130. 130.
    Kohno H, Suzuki R, Yasui Y, Hosokawa M, Miyashita K, Tanaka T (2004) Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci 95(6):481–486CrossRefGoogle Scholar
  131. 131.
    Toi M, Bando H, Ramachandran C, Melnick SJ, Imai A, Fife RS, Carr RE, Oikawa T, Lansky EP (2003) Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo. Angiogenesis 6(2):121–128.  https://doi.org/10.1023/B:AGEN.0000011802.81320.e4CrossRefGoogle Scholar
  132. 132.
    Shahidi F, Moonikh K (2017) Effects of pomegranate seed oil followed by resistance exercise on insulin resistance and lipid profile in non-athletic men. Feyz J Kashan Univ Med Sci 21(3):224–231Google Scholar
  133. 133.
    Massart-Leen A, De Pooter H, Decloedt M, Schamp N (1981) Composition and variability of the branched-chain fatty acid fraction in the milk of goats and cows. Lipids 16(5):286–292CrossRefGoogle Scholar
  134. 134.
    Favre HA, Powell WH (2013) Nomenclature of organic chemistry: IUPAC recommendations and preferred names 2013. Royal Society of Chemistry, CambridgeGoogle Scholar
  135. 135.
    Duncan W, Garton G (1978) Differences in the proportions of branched-chain fatty acids in subcutaneous triacylglycerols of barley-fed ruminants. Br J Nutr 40(1):29–33CrossRefGoogle Scholar
  136. 136.
    Chilliard Y, Martin C, Rouel J, Doreau M (2009) Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J Dairy Sci 92(10):5199–5211CrossRefGoogle Scholar
  137. 137.
    Ran-Ressler RR, Bae S, Lawrence P, Wang DH, Brenna JT (2014) Branched-chain fatty acid content of foods and estimated intake in the USA. Br J Nutr 112(4):565–572CrossRefGoogle Scholar
  138. 138.
    Ran-Ressler RR, Khailova L, Arganbright KM, Adkins-Rieck CK, Jouni ZE, Koren O, Ley RE, Brenna JT, Dvorak B (2011) Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS One 6(12):e29032.  https://doi.org/10.1371/journal.pone.0029032CrossRefGoogle Scholar
  139. 139.
    Downing D (1964) Branched-chain fatty acids in lipids of the newly born lamb. J Lipid Res 5(2):210–215Google Scholar
  140. 140.
    Wang DH, Jackson JR, Twining C, Rudstam LG, Zollweg-Horan E, Kraft C, Lawrence P, Kothapalli K, Wang Z, Brenna JT (2016) Saturated branched chain, normal odd-carbon-numbered, and n-3 (omega-3) polyunsaturated fatty acids in freshwater fish in the Northeastern United States. J Agric Food Chem 64(40):7512–7519.  https://doi.org/10.1021/acs.jafc.6b03491CrossRefGoogle Scholar
  141. 141.
    Egge H, Murawski U, Ryhage R, György P, Chatranon W, Zilliken F (1972) Minor constituents of human milk IV: analysis of the branched chain fatty acids. Chem Phys Lipids 8(1):42–55CrossRefGoogle Scholar
  142. 142.
    Gibson RA, Kneebone GM (1981) Fatty acid composition of human colostrum and mature breast milk. Am J Clin Nutr 34(2):252–257CrossRefGoogle Scholar
  143. 143.
    Ran-Ressler RR, Devapatla S, Lawrence P, Brenna JT (2008) Branched chain fatty acids are constituents of the normal healthy newborn gastrointestinal tract. Pediatr Res 64(6):605CrossRefGoogle Scholar
  144. 144.
    Veerkamp J (1971) Fatty acid composition of bifidobacterium and lactobacillus strains. J Bacteriol 108(2):861–867Google Scholar
  145. 145.
    Kaneda T (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55(2):288–302Google Scholar
  146. 146.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 108(Suppl 1):4578–4585CrossRefGoogle Scholar
  147. 147.
    Yang P, Collin P, Madden T, Chan D, Sweeney-Gotsch B, McConkey D, Newman RA (2003) Inhibition of proliferation of PC3 cells by the branched-chain fatty acid, 12-methyltetradecanoic acid, is associated with inhibition of 5-lipoxygenase. Prostate 55(4):281–291CrossRefGoogle Scholar
  148. 148.
    Wongtangtintharn S, Oku H, Iwasaki H, Inafuku M, Toda T, Yanagita T (2005) Incorporation of branched-chain fatty acid into cellular lipids and caspase-independent apoptosis in human breast cancer cell line, SKBR-3. Lipids Health Dis 4(1):29CrossRefGoogle Scholar
  149. 149.
    Lin T, Yin X, Cai Q, Fan X, Xu K, Huang L, Luo J, Zheng J, Huang J (2012) 13-Methyltetradecanoic acid induces mitochondrial-mediated apoptosis in human bladder cancer cells. Urol Oncol 30(3):339–345. ElsevierCrossRefGoogle Scholar
  150. 150.
    Prescha A, Grajzer M, Dedyk M, Grajeta H (2014) The antioxidant activity and oxidative stability of cold-pressed oils. J Am Oil Chem Soc 91(8):1291–1301.  https://doi.org/10.1007/s11746-014-2479-1CrossRefGoogle Scholar
  151. 151.
    Blekas G, Boskou D (2006) Antioxidant phenols in vegetable oils. Natural Antioxidant Phenols. Research Signpost, Kerala, pp 15–27Google Scholar
  152. 152.
    Boskou D (2017) Edible cold pressed oils and their biologically active components. J Exp Food Chem 3:e108Google Scholar
  153. 153.
    Rueda A, Seiquer I, Olalla M, Giménez R, Lara L, Cabrera-Vique C (2014) Characterization of fatty acid profile of argan oil and other edible vegetable oils by gas chromatography and discriminant analysis. J Chem 2014  https://doi.org/10.1155/2014/843908
  154. 154.
    Gunstone F (2011) Vegetable oils in food technology: composition, properties and uses. Wiley, New YorkCrossRefGoogle Scholar
  155. 155.
    Pieszka M, Migdał W, Gąsior R, Rudzińska M, Bederska-Łojewska D, Pieszka M, Szczurek P (2015) Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: a health implication. J Chem 2015  https://doi.org/10.1155/2015/659541
  156. 156.
    Parry J, Su L, Luther M, Zhou K, Yurawecz MP, Whittaker P, Yu L (2005) Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J Agric Food Chem 53(3):566–573.  https://doi.org/10.1021/jf048615tCrossRefGoogle Scholar
  157. 157.
    Castro-Gomez P, Garcia-Serrano A, Visioli F, Fontecha J (2015) Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins, Leukot Essent Fatty Acids (PLEFA) 101:41–51CrossRefGoogle Scholar
  158. 158.
    Vance DE (2002) Phospholipid biosynthesis in eukaryotes. New Compr Biochem 36:205–232CrossRefGoogle Scholar
  159. 159.
    Park S-J, Im D-S (2015) G protein-coupled receptors for lysophosphatidylethanolamine. Recept Clin Invest 2(4)  https://doi.org/10.14800/rci.999
  160. 160.
    Yamashita A, Oka S, Tanikawa T, Hayashi Y, Nemoto-Sasaki Y, Sugiura T (2013) The actions and metabolism of lysophosphatidylinositol, an endogenous agonist for GPR55. Prostaglandins Other Lipid Mediat 107:103–116.  https://doi.org/10.1016/j.prostaglandins.2013.05.004CrossRefGoogle Scholar
  161. 161.
    Frasch SC, Bratton DL (2012) Emerging roles for lysophosphatidylserine in resolution of inflammation. Prog Lipid Res 51(3):199–207.  https://doi.org/10.1016/j.plipres.2012.03.001CrossRefGoogle Scholar
  162. 162.
    Sevastou I, Kaffe E, Mouratis M-A, Aidinis V (2013) Lysoglycerophospholipids in chronic inflammatory disorders: the PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta 1831(1): 42–60.  https://doi.org/10.1016/j.bbalip.2012.07.019CrossRefGoogle Scholar
  163. 163.
    Arouri A, Mouritsen OG (2013) Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 52(1):130–140.  https://doi.org/10.1016/j.plipres.2012.09.002CrossRefGoogle Scholar
  164. 164.
    Farooqui AA, Horrocks LA (2001) Book review: Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7(3):232–245.  https://doi.org/10.1177/107385840100700308CrossRefGoogle Scholar
  165. 165.
    Lessig J, Fuchs B (2009) Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr Med Chem 16(16):2021–2041CrossRefGoogle Scholar
  166. 166.
    Wallner S, Schmitz G (2011) Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 164(6):573–589.  https://doi.org/10.1016/j.chemphyslip.2011.06.008CrossRefGoogle Scholar
  167. 167.
    Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39(3):257–288.  https://doi.org/10.1016/S0163-7827(00)00005-9CrossRefGoogle Scholar
  168. 168.
    Adibhatla RM, Hatcher JF (2009) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12(1):125–169.  https://doi.org/10.1089/ars.2009.2668CrossRefGoogle Scholar
  169. 169.
    Catalá A (2012) Lipid peroxidation modifies the picture of membranes from the “Fluid mosaic model” to the “Lipid whisker model”. Biochimie 94(1):101–109.  https://doi.org/10.1016/j.biochi.2011.09.025CrossRefGoogle Scholar
  170. 170.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658.  https://doi.org/10.1111/j.1471-4159.2006.03907.xCrossRefGoogle Scholar
  171. 171.
    Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27(12):639–645.  https://doi.org/10.1016/j.tips.2006.10.005CrossRefGoogle Scholar
  172. 172.
    Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292(1):C33–C44.  https://doi.org/10.1152/ajpcell.00243.2006CrossRefGoogle Scholar
  173. 173.
    Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252(1):1–15.  https://doi.org/10.1046/j.1432-1327.1998.2520001.xCrossRefGoogle Scholar
  174. 174.
    Al-Gubory KH (2012) Mitochondria: omega-3 in the route of mitochondrial reactive oxygen species. Int J Biochem Cell Biol 44(9):1569–1573.  https://doi.org/10.1016/j.biocel.2012.06.003CrossRefGoogle Scholar
  175. 175.
    Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26(9):1015–1035Google Scholar
  176. 176.
    Lundbæk JA, Collingwood SA, Ingólfsson HI, Kapoor R, Andersen OS (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7(44):373–395CrossRefGoogle Scholar
  177. 177.
    Escribá PV, Wedegaertner PB, Goñi FM, Vögler O (2007) Lipid–protein interactions in GPCR-associated signaling. Biochim Biophys Acta Biomembr 1768(4):836–852CrossRefGoogle Scholar
  178. 178.
    Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001(111):re19-re19.  https://doi.org/10.1126/stke.2001.111.re19Google Scholar
  179. 179.
    McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438(7068):605CrossRefGoogle Scholar
  180. 180.
    Suh B-C, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37(1):175–195.  https://doi.org/10.1146/annurev.biophys.37.032807.125859CrossRefGoogle Scholar
  181. 181.
    Lee A (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta Biomembr 1612(1):1–40CrossRefGoogle Scholar
  182. 182.
    Schmitz G, Ecker J (2008) The opposing effects of n− 3 and n− 6 fatty acids. Prog Lipid Res 47(2):147–155CrossRefGoogle Scholar
  183. 183.
    Mouritsen OG, Kinnunen PK (1996) Role of lipid organization and dynamics for membrane functionality. In: Biological membranes. Springer, Birkhäuser, Boston, pp 463–502Google Scholar
  184. 184.
    Janmey PA, Kinnunen PKJ (2006) Biophysical properties of lipids and dynamic membranes. Trends Cell Biol 16(10):538–546.  https://doi.org/10.1016/j.tcb.2006.08.009CrossRefGoogle Scholar
  185. 185.
    Lee AG (2005) How lipids and proteins interact in a membrane: a molecular approach. Mol BioSyst 1(3):203–212CrossRefGoogle Scholar
  186. 186.
    Lundbæk JA (2006) Regulation of membrane protein function by lipid bilayer elasticity – a single molecule technology to measure the bilayer properties experienced by an embedded protein. J Phys Condens Matter 18(28):S1305CrossRefGoogle Scholar
  187. 187.
    Andersen OS, Koeppe RE (2007) Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 36:107CrossRefGoogle Scholar
  188. 188.
    Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta Biomembr 1778(7–8):1545–1575.  https://doi.org/10.1016/j.bbamem.2008.01.015CrossRefGoogle Scholar
  189. 189.
    Sackmann E (1995) Physical basis of self-organization and function of membranes: physics of vesicles. In: Handbook of biological physics, vol 1. Elsevier, North Holland, pp 213–304Google Scholar
  190. 190.
    Hamanaka S, Suzuki A, Hara M, Nishio H, Otsuka F, Uchida Y (2002) Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Investig Dermatol 119(2):416–423CrossRefGoogle Scholar
  191. 191.
    Merrill AH (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422.  https://doi.org/10.1021/cr2002917CrossRefGoogle Scholar
  192. 192.
    Aureli M, Loberto N, Chigorno V, Prinetti A, Sonnino S (2011) Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res 36(9):1636–1644.  https://doi.org/10.1007/s11064-010-0360-7CrossRefGoogle Scholar
  193. 193.
    Christie W (2014) Ceramides. Structure, composition, function and analysis. The lipid library AOCS 2710 S. Boulder, Urbana, IL 61802–6996 U.S.A.Google Scholar
  194. 194.
    Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276(23):20589–20596CrossRefGoogle Scholar
  195. 195.
    Grassmé H, Schwarz H, Gulbins E (2001) Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284(4):1016–1030CrossRefGoogle Scholar
  196. 196.
    Goñi FM, Contreras F-X, Montes L-R, Sot J, Alonso A (2005) Biophysics (and sociology) of ceramides. In: Biochemical society symposia. Portland Press Limited, pp 177–188. LondonGoogle Scholar
  197. 197.
    Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531(1): 47–53CrossRefGoogle Scholar
  198. 198.
    Krönke M (1999) Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes. Chem Phys Lipids 101(1):109–121CrossRefGoogle Scholar
  199. 199.
    Ruvolo PP (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47(5):383–392CrossRefGoogle Scholar
  200. 200.
    Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277(29):25847–25850CrossRefGoogle Scholar
  201. 201.
    Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4(8):604CrossRefGoogle Scholar
  202. 202.
    Saddoughi SA, Ogretmen B (2012) Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res 117:37CrossRefGoogle Scholar
  203. 203.
    Sugiura M, Kono K, Liu H, Shimizugawa T, Minekura H, Spiegel S, Kohama T (2002) Ceramide kinase, a novel lipid kinase molecular cloning and functional characterization. J Biol Chem 277(26):23294–23300CrossRefGoogle Scholar
  204. 204.
    Tafesse FG, Ternes P, Holthuis JC (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281(40):29421–29425CrossRefGoogle Scholar
  205. 205.
    Ichikawa S, Hirabayashi Y (1998) Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8(5):198–202CrossRefGoogle Scholar
  206. 206.
    Wijesinghe DS, Massiello A, Subramanian P, Szulc Z, Bielawska A, Chalfant CE (2005) Substrate specificity of human ceramide kinase. J Lipid Res 46(12):2706–2716CrossRefGoogle Scholar
  207. 207.
    El Bawab S, Mao C, Obeid LM, Hannun YA (2004) Ceramidases in the regulation of ceramide levels and function. In: Phospholipid metabolism in apoptosis. Springer, Boston, pp 187–205CrossRefGoogle Scholar
  208. 208.
    Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM (2001) Cloning and characterization of a novel human alkaline ceramidase A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 276(28):26577–26588CrossRefGoogle Scholar
  209. 209.
    Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Krönke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor–induced cell death. J Exp Med 192(5):601–612CrossRefGoogle Scholar
  210. 210.
    Smith E, Merrill AH, Obeid LM, Hannun YA (2000) Effects of sphingosine and other sphingolipids on protein kinase C. Methods Enzymol 312:361–373CrossRefGoogle Scholar
  211. 211.
    Cowart LA, Hannun YA (2007) Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis. J Biol Chem 282(16):12330–12340CrossRefGoogle Scholar
  212. 212.
    Leidl K, Liebisch G, Richter D, Schmitz G (2008) Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta 1781(10):655–664CrossRefGoogle Scholar
  213. 213.
    Cowart LA (2009) Sphingolipids: players in the pathology of metabolic disease. Trends Endocrinol Metab 20(1):34–42CrossRefGoogle Scholar
  214. 214.
    Schneider M, Levant B, Reichel M, Gulbins E, Kornhuber J, Müller CP (2017) Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 76(Part B):336–362.  https://doi.org/10.1016/j.neubiorev.2016.06.002CrossRefGoogle Scholar
  215. 215.
    Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CK, Schuchman EH, Fuks Z, Kolesnick R (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186(11):1831–1841CrossRefGoogle Scholar
  216. 216.
    Pfeiffer A, Böttcher A, Orsó E, Kapinsky M, Nagy P, Bodnár A, Spreitzer I, Liebisch G, Drobnik W, Gempel K (2001) Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31(11):3153–3164CrossRefGoogle Scholar
  217. 217.
    Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584(9):1728–1740CrossRefGoogle Scholar
  218. 218.
    Kolesnick R (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110(1):3CrossRefGoogle Scholar
  219. 219.
    Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91(5):605–615CrossRefGoogle Scholar
  220. 220.
    Grassme H, Jendrossek V, Riehle A, Von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9(3):322CrossRefGoogle Scholar
  221. 221.
    Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6(6):431–439CrossRefGoogle Scholar
  222. 222.
    Hanada K, Mitamura T, Fukasawa M, Magistrado PA, Horii T, Nishijima M (2000) Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum. Biochem J 346(3):671–677CrossRefGoogle Scholar
  223. 223.
    Finnegan CM, Rawat SS, Puri A, Wang JM, Ruscetti FW, Blumenthal R (2004) Ceramide, a target for antiretroviral therapy. Proc Natl Acad Sci USA 101(43):15452–15457CrossRefGoogle Scholar
  224. 224.
    Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39(2):82–91CrossRefGoogle Scholar
  225. 225.
    Merrill AH, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36(2):207–224CrossRefGoogle Scholar
  226. 226.
    Romiti E, Vasta V, Meacci E, Farnararo M, Linke T, Ferlinz K, Sandhoff K, Bruni P (2000) Characterization of sphingomyelinase activity released by thrombin-stimulated platelets. Mol Cell Biochem 205(1):75–81CrossRefGoogle Scholar
  227. 227.
    Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, Ktistakis NT (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 279(43): 44763–44774CrossRefGoogle Scholar
  228. 228.
    Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270(51):30701–30708CrossRefGoogle Scholar
  229. 229.
    Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274(5294):1855CrossRefGoogle Scholar
  230. 230.
    Becker KP, Kitatani K, Idkowiak-Baldys J, Bielawski J, Hannun YA (2005) Selective inhibition of juxtanuclear translocation of protein kinase C βII by a negative feedback mechanism involving ceramide formed from the salvage pathway. J Biol Chem 280(4):2606–2612CrossRefGoogle Scholar
  231. 231.
    Jenkins GM, Cowart LA, Signorelli P, Pettus BJ, Chalfant CE, Hannun YA (2002) Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J Biol Chem 277(45):42572–42578CrossRefGoogle Scholar
  232. 232.
    Liu Y-Y, Han T-Y, Giuliano AE, Cabot MC (2001) Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 15(3):719–730CrossRefGoogle Scholar
  233. 233.
    Goetzl EJ (2001) Pleiotypic mechanisms of cellular responses to biologically active lysophospholipids. Prostaglandins Other Lipid Mediat 64(1):11–20CrossRefGoogle Scholar
  234. 234.
    Hla T (2004) Physiological and pathological actions of sphingosine 1-phosphate. In: Seminars in cell & developmental biology, vol 5. Elsevier, UK, pp 513–520Google Scholar
  235. 235.
    Pettus BJ, Bielawska A, Subramanian P, Wijesinghe DS, Maceyka M, Leslie CC, Evans JH, Freiberg J, Roddy P, Hannun YA (2004) Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 279(12):11320–11326CrossRefGoogle Scholar
  236. 236.
    Mitsutake S, Igarashi Y (2005) Calmodulin is involved in the Ca2+−dependent activation of ceramide kinase as a calcium sensor. J Biol Chem 280(49):40436–40441CrossRefGoogle Scholar
  237. 237.
    Hinkovska-Galcheva V, Boxer LA, Kindzelskii A, Hiraoka M, Abe A, Goparju S, Spiegel S, Petty HR, Shayman JA (2005) Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem 280(28):26612–26621CrossRefGoogle Scholar
  238. 238.
    Mitsutake S, Kim T-J, Inagaki Y, Kato M, Yamashita T, Igarashi Y (2004) Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J Biol Chem 279 (17):17570–17577CrossRefGoogle Scholar
  239. 239.
    Gómez-Muñoz A (2006) Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim Biophys Acta Biomembr 1758(12):2049–2056CrossRefGoogle Scholar
  240. 240.
    Schulz A, Mousallem T, Venkataramani M, Persaud-Sawin D-A, Zucker A, Luberto C, Bielawska A, Bielawski J, Holthuis JC, Jazwinski SM (2006) The CLN9 protein, a regulator of dihydroceramide synthase. J Biol Chem 281(5):2784–2794CrossRefGoogle Scholar
  241. 241.
    Kraveka JM, Li L, Szulc ZM, Bielawski J, Ogretmen B, Hannun YA, Obeid LM, Bielawska A (2007) Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem 282(23):16718–16728CrossRefGoogle Scholar
  242. 242.
    Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta Biomembr 1758(12):1864–1884CrossRefGoogle Scholar
  243. 243.
    Ignatov A, Lintzel J, Hermans-Borgmeyer I, Kreienkamp H-J, Joost P, Thomsen S, Methner A, Schaller HC (2003) Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development. J Neurosci 23(3):907–914Google Scholar
  244. 244.
    Gouaze-Andersson V, Cabot MC (2006) Glycosphingolipids and drug resistance. Biochim Biophys Acta Biomembr 1758(12):2096–2103CrossRefGoogle Scholar
  245. 245.
    Raggers RJ, van Helvoort A, Evers R, van Meer G (1999) The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 112(3):415–422Google Scholar
  246. 246.
    Vesper H, Schmelz E-M, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129(7):1239–1250CrossRefGoogle Scholar
  247. 247.
    Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38(3):181–191CrossRefGoogle Scholar
  248. 248.
    Hoyo Pérez J, Guaus Guerrero E, Torrent Burgués J (2016) Monogalactosyldiacylglycerol and digalactosyldiacylglycerol role, physical states, applications and biomimetic monolayer films. Eur Phys J E Soft Matter 39(3):39CrossRefGoogle Scholar
  249. 249.
    Maeda N, Kokai Y, Ohtani S, Sahara H, Kumamoto-Yonezawa Y, Kuriyama I, Hada T, Sato N, Yoshida H, Mizushina Y (2008) Anti-tumor effect of orally administered spinach glycolipid fraction on implanted cancer cells, colon-26, in mice. Lipids 43(8):741.  https://doi.org/10.1007/s11745-008-3202-5CrossRefGoogle Scholar
  250. 250.
    Maeda N, Kokai Y, Ohtani S, Sahara H, Hada T, Ishimaru C, Kuriyama I, Yonezawa Y, Iijima H, Yoshida H, Sato N, Mizushina Y (2007) Anti-tumor effects of the glycolipids fraction from spinach which inhibited DNA polymerase activity. Nutr Cancer 57(2):216–223.  https://doi.org/10.1080/01635580701277908CrossRefGoogle Scholar
  251. 251.
    Bruno A, Rossi C, Marcolongo G, Di Lena A, Venzo A, Berrie CP, Corda D (2005) Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol. Eur J Pharmacol 524(1):159–168.  https://doi.org/10.1016/j.ejphar.2005.09.023CrossRefGoogle Scholar
  252. 252.
    Chu B-S, Gunning AP, Rich GT, Ridout MJ, Faulks RM, Wickham MSJ, Morris VJ, Wilde PJ (2010) Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir 26(12):9782–9793.  https://doi.org/10.1021/la1000446CrossRefGoogle Scholar
  253. 253.
    de Jesus C-SA, Hernández-Sánchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168(1):22–32CrossRefGoogle Scholar
  254. 254.
    Al-Araji L, Rahman RNZRA, Basri M, Salleh AB (2007) Microbial surfactant. Asia Pac J Mol Biol Biotechnol 15(3):99–105Google Scholar
  255. 255.
    Nitschke M, Costa S (2007) Biosurfactants in food industry. Trends Food Sci Technol 18(5):252–259CrossRefGoogle Scholar
  256. 256.
    Küllenberg D, Taylor LA, Schneider M, Massing U (2012) Health effects of dietary phospholipids. Lipids Health Dis 11(1):3CrossRefGoogle Scholar
  257. 257.
    Nicolson GL, Ash ME (2014) Lipid replacement therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta Biomembr 1838(6):1657–1679.  https://doi.org/10.1016/j.bbamem.2013.11.010CrossRefGoogle Scholar
  258. 258.
    Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46(2):141–153.  https://doi.org/10.1016/S0006-3495(84)84007-2CrossRefGoogle Scholar
  259. 259.
    Drobnies AE, Davies SMA, Kraayenhof R, Epand RF, Epand RM, Cornell RB (2002) CTP:phosphocholine cytidylyltransferase and protein kinase C recognize different physical features of membranes: differential responses to an oxidized phosphatidylcholine. Biochim Biophys Acta Biomembr 1564(1):82–90.  https://doi.org/10.1016/S0005-2736(02)00404-2CrossRefGoogle Scholar
  260. 260.
    Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog Lipid Res 49(4):378–389.  https://doi.org/10.1016/j.plipres.2010.05.001CrossRefGoogle Scholar
  261. 261.
    Zimmerberg J, Gawrisch K (2006) The physical chemistry of biological membranes. Nat Chem Biol 2(11):564–567CrossRefGoogle Scholar
  262. 262.
    Dumas F, Sperotto MM, Lebrun MC, Tocanne JF, Mouritsen OG (1997) Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophys J 73(4):1940–1953.  https://doi.org/10.1016/S0006-3495(97)78225-0CrossRefGoogle Scholar
  263. 263.
    Vereyken IJ, Chupin V, Demel RA, Smeekens SCM, De Kruijff B (2001) Fructans insert between the headgroups of phospholipids. Biochim Biophys Acta Biomembr 1510(1–2):307–320.  https://doi.org/10.1016/S0005-2736(00)00363-1CrossRefGoogle Scholar
  264. 264.
    Nicolson GL, Ash ME (2017) Membrane lipid replacement for chronic illnesses, aging and cancer using oral glycerophospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. Biochim Biophys Acta Biomembr 1859(9, Part B):1704–1724.  https://doi.org/10.1016/j.bbamem.2017.04.013CrossRefGoogle Scholar
  265. 265.
    Ehehalt R, Braun A, Karner M, Füllekrug J, Stremmel W (2010) Phosphatidylcholine as a constituent in the colonic mucosal barrier – physiological and clinical relevance. Biochim Biophys Acta 1801(9):983–993.  https://doi.org/10.1016/j.bbalip.2010.05.014CrossRefGoogle Scholar
  266. 266.
    Nicolson GL, Conklin KA (2008) Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis 25(2):161–169.  https://doi.org/10.1007/s10585-007-9129-zCrossRefGoogle Scholar
  267. 267.
    Nicolson GL (2005) Lipid replacement/antioxidant therapy as an adjunct supplement to reduce the adverse effects of cancer therapy and restore mitochondrial function. Pathol Oncol Res 11(3):139.  https://doi.org/10.1007/bf02893390CrossRefGoogle Scholar
  268. 268.
    Settineri RA, Palmer JF (2012) Lipid supplements for maintaining health and the treatment of acute and chronic disorders. Google PatentsGoogle Scholar
  269. 269.
    Ellithorpe RR, Settineri R, Jacques B, Mitchell CA, Nicolson GL (2012) Lipid replacement therapy functional food formulation with NT factor for reducing weight, girth, body mass, appetite and fatigue while improving blood lipid profiles. Funct Foods Health Dis 2(1):11–24Google Scholar
  270. 270.
    Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53(6):1412–1417CrossRefGoogle Scholar
  271. 271.
    Zierenberg O, Assmann G, Schmitz G, Rosseneu M (1981) Effect of polyenephosphatidylcholine on cholesterol uptake by human high density lipoprotein. Atherosclerosis 39(4):527–542.  https://doi.org/10.1016/0021-9150(81)90010-1CrossRefGoogle Scholar
  272. 272.
    Magnusson CD, Haraldsson GG (2011) Ether lipids. Chem Phys Lipids 164(5):315–340CrossRefGoogle Scholar
  273. 273.
    Pedrono F, Martin B, Leduc C, Le Lan J, Saiag B, Legrand P, Moulinoux J-P, Legrand AB (2004) Natural alkylglycerols restrain growth and metastasis of grafted tumors in mice. Nutr Cancer 48(1):64–69.  https://doi.org/10.1207/s15327914nc4801_9CrossRefGoogle Scholar
  274. 274.
    Skopinska-Rozewska E, Krotkiewski M, Sommer E, Rogala E, Filewska M, Bialas-Chromiec B, Pastewka K, Skurzak H (1999) Inhibitory effect of shark liver oil on cutaneous angiogenesis induced in Balb/c mice by syngeneic sarcoma L-1, human urinary bladder and human kidney tumour cells. Oncol Rep 6:1341Google Scholar
  275. 275.
    Pédrono F, Saïag B, Moulinoux J-P, Legrand AB (2007) 1-O-Alkylglycerols reduce the stimulating effects of bFGF on endothelial cell proliferation in vitro. Cancer Lett 251(2):317–322.  https://doi.org/10.1016/j.canlet.2006.11.028CrossRefGoogle Scholar
  276. 276.
    Krotkiewski M, Przybyszewska M, Janik P (2003) Cytostatic and cytotoxic effects of alkylglycerols (Ecomer). Med Sci Monit 9(11):Pi131–Pi135Google Scholar
  277. 277.
    Reynolds S, Cederberg H, Chakrabarty S (2000) Inhibitory effect of 1-O (2 methoxy) hexadecyl glycerol and phenylbutyrate on the malignant properties of human prostate cancer cells. Clin Exp Metastasis 18(4):309.  https://doi.org/10.1023/a:1011071907047CrossRefGoogle Scholar
  278. 278.
    Wang H, Rajagopal S, Reynolds S, Cederberg H, Chakrabarty S (1999) Differentiation-promoting effect of 1-O (2 methoxy) hexadecyl glycerol in human colon cancer cells. J Cell Physiol 178(2):173–178.  https://doi.org/10.1002/(SICI)1097-4652(199902)178:2<173::AID-JCP6>3.0.CO;2-QCrossRefGoogle Scholar
  279. 279.
    Iagher F, de Brito Belo SR, Souza WM, Nunes JR, Naliwaiko K, Sassaki GL, Bonatto SJR, de Oliveira HHP, Brito GAP, de Lima C (2013) Antitumor and anti-cachectic effects of shark liver oil and fish oil: comparison between independent or associative chronic supplementation in Walker 256 tumor-bearing rats. Lipids Health Dis 12(1):146CrossRefGoogle Scholar
  280. 280.
    Iagher F, de Brito Belo SR, Naliwaiko K, Franzói AM, de Brito GAP, Yamazaki RK, Muritiba AL, Muehlmann LA, Steffani JA, Fernandes LC (2011) Chronic supplementation with shark liver oil for reducing tumor growth and cachexia in Walker 256 tumor-bearing rats. Nutr Cancer 63(8):1307–1315.  https://doi.org/10.1080/01635581.2011.607540CrossRefGoogle Scholar
  281. 281.
    Hallgren B (ed) (1983) Therapeutic effects of ether lipids. In: Ether lipids: biochemical and biomedical aspects. Academic, New YorkGoogle Scholar
  282. 282.
    Joelsson I (1988) Effect of alkylglycerols on the frequency of fistulas following radiation therapy. Lipidforum, Lund, pp 1–7Google Scholar
  283. 283.
    Berdel WE, Bausert WR, Weltzien HU, Modolell ML, Widmann KH, Munder PG (1980) The influence of alkyl-lysophospholipids and lysophospholipid-activated macrophages on the development of metastasis of 3-Lewis lung carcinoma. Eur J Cancer (1965) 16(9):1199–1204.  https://doi.org/10.1016/0014-2964(80)90179-6CrossRefGoogle Scholar
  284. 284.
    Acevedo R, Gil D, Campo JD, Bracho G, Valdes Y, Perez O (2006) The adjuvant potential of synthetic alkylglycerols. Vaccine 24(Suppl 2):S32–S33CrossRefGoogle Scholar
  285. 285.
    Kantah M-K, Wakasugi H, Kumari A (2012) Intestinal immune-potentiation by a purified alkylglycerols compound. Acta Biomed 83(1):36–43Google Scholar
  286. 286.
    Qian L, Zhang M, Wu S, Zhong Y, Van Tol E, Cai W (2014) Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes. PLoS One 9(4):e96207CrossRefGoogle Scholar
  287. 287.
    Tchórzewski H, Banasik M, Głowacka E, Lewkowicz P (2002) Modification of innate immunity in humans by active components of shark liver oil. Pol Merkur Lekarski 13(76):329–332Google Scholar
  288. 288.
    Palmieri B, Pennelli A, Di Cerbo A (2014) Jurassic surgery and immunity enhancement by alkyglycerols of shark liver oil. Lipids Health Dis 13(1):178.  https://doi.org/10.1186/1476-511x-13-178CrossRefGoogle Scholar
  289. 289.
    Mitre R, Etienne M, Martinais S, Salmon H, Allaume P, Legrand P, Legrand AB (2007) Humoral defence improvement and haematopoiesis stimulation in sows and offspring by oral supply of shark-liver oil to mothers during gestation and lactation. Br J Nutr 94(5):753–762.  https://doi.org/10.1079/BJN20051569CrossRefGoogle Scholar
  290. 290.
    Oh SY, Jadhav LS (1994) Effects of dietary alkylglycerols in lactating rats on immune responses in pups. Pediatr Res 36(3):300–305CrossRefGoogle Scholar
  291. 291.
    Erdlenbruch B, Jendrossek V, Eibl H, Lakomek M (2000) Transient and controllable opening of the blood-brain barrier to cytostatic and antibiotic agents by alkylglycerols in rats. Exp Brain Res 135(3):417–422.  https://doi.org/10.1007/s002210000553CrossRefGoogle Scholar
  292. 292.
    Erdlenbruch B, Alipour M, Fricker G, Miller DS, Kugler W, Eibl H, Lakomek M (2003) Alkylglycerol opening of the blood–brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol 140(7):1201–1210CrossRefGoogle Scholar
  293. 293.
    Erdlenbruch B, Schinkhof C, Kugler W, Heinemann DE, Herms J, Eibl H, Lakomek M (2003) Intracarotid administration of short-chain alkylglycerols for increased delivery of methotrexate to the rat brain. Br J Pharmacol 139(4):685–694CrossRefGoogle Scholar
  294. 294.
    Hülper P, Dullin C, Kugler W, Lakomek M, Erdlenbruch B (2011) Monitoring proteins using in vivo near-infrared time-domain optical imaging after 2-O-hexyldiglycerol-mediated transfer to the brain. Mol Imaging Biol 13(2):275–283CrossRefGoogle Scholar
  295. 295.
    Hülper P, Veszelka S, Walter F, Wolburg H, Fallier-Becker P, Piontek J, Blasig I, Lakomek M, Kugler W, Deli M (2013) Acute effects of short-chain alkylglycerols on blood-brain barrier properties of cultured brain endothelial cells. Br J Pharmacol 169(7):1561–1573CrossRefGoogle Scholar
  296. 296.
    Zhang M, Sun S, Tang N, Cai W, Qian L (2013) Oral administration of alkylglycerols differentially modulates high-fat diet-induced obesity and insulin resistance in mice. Evid Based Complement Alternat Med 2013:834027Google Scholar
  297. 297.
    Parri A, Fitó M, Torres C, Muñoz-Aguayo D, Schröder H, Cano J, Vázquez L, Reglero G, Covas M-I (2016) Alkylglycerols reduce serum complement and plasma vascular endothelial growth factor in obese individuals. Inflammopharmacology 24(2–3):127–131CrossRefGoogle Scholar
  298. 298.
    Cheminade C, Gautier V, Hichami A, Allaume P, Le Lannou D, Legrand AB (2002) 1-O-alkylglycerols improve boar sperm motility and fertility. Biol Reprod 66(2):421–428CrossRefGoogle Scholar
  299. 299.
    Mitre R, Cheminade C, Allaume P, Legrand P, Legrand AB (2004) Oral intake of shark liver oil modifies lipid composition and improves motility and velocity of boar sperm. Theriogenology 62(8):1557–1566CrossRefGoogle Scholar
  300. 300.
    Haynes M, Buckley HR, Higgins ML, Pieringer RA (1994) Synergism between the antifungal agents amphotericin B and alkyl glycerol ethers. Antimicrob Agents Chemother 38(7):1523–1529CrossRefGoogle Scholar
  301. 301.
    Ved H, Gustow E, Mahadevan V, Pieringer R (1984) Dodecylglycerol. A new type of antibacterial agent which stimulates autolysin activity in Streptococcus faecium ATCC 9790. J Biol Chem 259(13):8115–8121Google Scholar
  302. 302.
    Wong J, Rios-Solis L, Keasling JD (2017) Microbial production of isoprenoids. In: Lee SY (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer International Publishing, Cham, pp 1–24.  https://doi.org/10.1007/978-3-319-31421-1_219-2Google Scholar
  303. 303.
    Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32(10):1508–1526CrossRefGoogle Scholar
  304. 304.
    McCaskill D, Croteau R (1997) Prospects for the bioengineering of isoprenoid biosynthesis. In: Berger RG, Babel W, Blanch HW et al (eds) Biotechnology of aroma compounds. Springer, Berlin/Heidelberg, pp 107–146.  https://doi.org/10.1007/BFb0102064CrossRefGoogle Scholar
  305. 305.
    Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5(1):75–97.  https://doi.org/10.1007/s11101-005-3748-2CrossRefGoogle Scholar
  306. 306.
    Fraga BM (2012) Natural sesquiterpenoids. Nat Prod Rep 29(11):1334–1366.  https://doi.org/10.1039/c2np20074kCrossRefGoogle Scholar
  307. 307.
    McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015–1026CrossRefGoogle Scholar
  308. 308.
    Wang H, Zou Z, Wang S, Gong M (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS One 8(12):e82817.  https://doi.org/10.1371/journal.pone.0082817CrossRefGoogle Scholar
  309. 309.
    Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 57(1):13–19Google Scholar
  310. 310.
    Skeel RT, Khleif SN (2011) Handbook of cancer chemotherapy. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  311. 311.
    Vasas A, Hohmann J (2014) Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev 114(17):8579–8612CrossRefGoogle Scholar
  312. 312.
    Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Rutledge EJG, Fortman JL, Johnson HE, Anderson JV, Keasling JD (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71(13):1466–1473.  https://doi.org/10.1016/j.phytochem.2010.06.001CrossRefGoogle Scholar
  313. 313.
    Blumberg PM (1988) Protein kinase C as the receptor for the Phorbol Ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res 48(1):1–8Google Scholar
  314. 314.
    Halaweish FT, Kronberg S, Hubert MB, Rice JA (2002) Toxic and aversive diterpenes of Euphorbia esula. J Chem Ecol 28(8):1599–1611CrossRefGoogle Scholar
  315. 315.
    Jiao W, Dong W, Li Z, Deng M, Lu R (2009) Lathyrane diterpenes from Euphorbia lathyris as modulators of multidrug resistance and their crystal structures. Bioorg Med Chem 17(13):4786–4792.  https://doi.org/10.1016/j.bmc.2009.04.041CrossRefGoogle Scholar
  316. 316.
    Srivalli KMR, Lakshmi P (2012) Overview of P-glycoprotein inhibitors: a rational outlook. Braz J Pharm Sci 48(3):353–367CrossRefGoogle Scholar
  317. 317.
    Gelb MH, Tamanoi F, Yokoyama K, Ghomashchi F, Esson K, Gould MN (1995) The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett 91(2):169–175CrossRefGoogle Scholar
  318. 318.
    Gould MN (1997) Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect 105(Suppl 4):977CrossRefGoogle Scholar
  319. 319.
    Hohl RJ (1996) Monoterpenes as regulators of malignant cell proliferation. In: Dietary phytochemicals in cancer prevention and treatment. Springer, New York, pp 137–146Google Scholar
  320. 320.
    Sen CK, Khanna S, Roy S (2007) Tocotrienols in health and disease: the other half of the natural vitamin E family. Mol Asp Med 28(5):692–728.  https://doi.org/10.1016/j.mam.2007.03.001CrossRefGoogle Scholar
  321. 321.
    Traber MG, Burton GW, Hamilton RL (2004) Vitamin E trafficking. Ann N Y Acad Sci 1031(1):1–12.  https://doi.org/10.1196/annals.1331.001CrossRefGoogle Scholar
  322. 322.
    Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, Inoue K (1997) Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409(1):105–108.  https://doi.org/10.1016/s0014-5793(97)00499-7CrossRefGoogle Scholar
  323. 323.
    Khanna S, Patel V, Rink C, Roy S, Sen CK (2005) Delivery of orally supplemented α-tocotrienol to vital organs of rats and tocopherol-transport protein deficient mice. Free Radic Biol Med 39(10):1310–1319.  https://doi.org/10.1016/j.freeradbiomed.2005.06.013CrossRefGoogle Scholar
  324. 324.
    Araya H, Tomita M, Hayashi M (2006) The novel formulation design of self-emulsifying drug delivery systems (SEDDS) type O/W microemulsion III: the permeation mechanism of a poorly water soluble drug entrapped O/W microemulsion in rat isolated intestinal membrane by the using chamber method. Drug Metab Pharmacokinet 21(1):45–53.  https://doi.org/10.2133/dmpk.21.45CrossRefGoogle Scholar
  325. 325.
    Gao P, Morozowich W (2006) Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv 3(1):97–110.  https://doi.org/10.1517/17425247.3.1.97CrossRefGoogle Scholar
  326. 326.
    Hong J-Y, Kim J-K, Song Y-K, Park J-S, Kim C-K (2006) A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J Control Release 110(2):332–338.  https://doi.org/10.1016/j.jconrel.2005.10.002CrossRefGoogle Scholar
  327. 327.
    Khosla P, Patel V, Whinter JM, Khanna S, Rakhkovskaya M, Roy S, Sen CK (2006) Postprandial levels of the natural vitamin E Tocotrienol in human circulation. Antioxid Redox Signal 8(5–6):1059–1068.  https://doi.org/10.1089/ars.2006.8.1059CrossRefGoogle Scholar
  328. 328.
    O’Byrne D, Grundy S, Packer L, Devaraj S, Baldenius K, Hoppe PP, Kraemer K, Jialal I, Traber MG (2000) Studies of LDL oxidation following α-, γ-, or δ-tocotrienyl acetate supplementation of hypercholesterolemic humans. Free Radic Biol Med 29(9):834–845.  https://doi.org/10.1016/S0891-5849(00)00371-3CrossRefGoogle Scholar
  329. 329.
    Yap SP, Yuen KH, Wong JW (2001) Pharmacokinetics and bioavailability of α-, γ- and δ-tocotrienols under different food status. J Pharm Pharmacol 53(1):67–71.  https://doi.org/10.1211/0022357011775208CrossRefGoogle Scholar
  330. 330.
    Hensley K, Benaksas EJ, Bolli R, Comp P, Grammas P, Hamdheydari L, Mou S, Pye QN, Stoddard MF, Wallis G, Williamson KS, West M, Wechter WJ, Floyd RA (2004) New perspectives on vitamin E: γ-tocopherol and carboxyethylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med 36(1):1–15.  https://doi.org/10.1016/j.freeradbiomed.2003.10.009CrossRefGoogle Scholar
  331. 331.
    Ghosh S, Hauer-Jensen M, Sree Kumar K (2008) Chemistry of tocotrienols. In: Tocotrienols. CRC Press, Boca Raton, FL, pp 85–96. doi: https://doi.org/10.1201/9781420080391.ch7
  332. 332.
    Sen CK, Khanna S, Roy S (2006) Tocotrienols: vitamin E beyond tocopherols. Life Sci 78(18):2088–2098.  https://doi.org/10.1016/j.lfs.2005.12.001CrossRefGoogle Scholar
  333. 333.
    Pearce BC, Parker RA, Deason ME, Qureshi AA, Wright JJK (1992) Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem 35(20):3595–3606.  https://doi.org/10.1021/jm00098a002CrossRefGoogle Scholar
  334. 334.
    Pearce BC, Parker RA, Deason ME, Dischino DD, Gillespie E, Qureshi AA, Wright JJK, Volk K (1994) Inhibitors of cholesterol biosynthesis. 2. Hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogs of the tocotrienols. J Med Chem 37(4):526–541.  https://doi.org/10.1021/jm00030a012CrossRefGoogle Scholar
  335. 335.
    Qureshi AA, Sami SA, Salser WA, Khan FA (2002) Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis 161(1):199–207.  https://doi.org/10.1016/S0021-9150(01)00619-0CrossRefGoogle Scholar
  336. 336.
    Adachi H, Ishii N (2000) Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol Ser A 55(6):B280–B285.  https://doi.org/10.1093/gerona/55.6.B280CrossRefGoogle Scholar
  337. 337.
    Mo H, Elson CE (1999) Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids. J Nutr 129(4):804–813CrossRefGoogle Scholar
  338. 338.
    Khanna S, Roy S, Parinandi NL, Maurer M, Sen CK (2006) Characterization of the potent neuroprotective properties of the natural vitamin E α-tocotrienol. J Neurochem 98(5):1474–1486.  https://doi.org/10.1111/j.1471-4159.2006.04000.xCrossRefGoogle Scholar
  339. 339.
    Khanna S, Roy S, Slivka A, Craft TKS, Chaki S, Rink C, Notestine MA, DeVries AC, Parinandi NL, Sen CK (2005) Neuroprotective properties of the natural vitamin E α-Tocotrienol. Stroke 36(10):2258–2264.  https://doi.org/10.1161/01.str.0000181082.70763.22CrossRefGoogle Scholar
  340. 340.
    Sen CK, Khanna S, Roy S (2004) Tocotrienol: the natural vitamin E to defend the nervous system? Ann N Y Acad Sci 1031(1):127–142.  https://doi.org/10.1196/annals.1331.013CrossRefGoogle Scholar
  341. 341.
    Valitova JN, Sulkarnayeva AG, Minibayeva FV (2016) Plant sterols: diversity, biosynthesis, and physiological functions. Biochem Mosc 81(8):819–834.  https://doi.org/10.1134/s0006297916080046CrossRefGoogle Scholar
  342. 342.
    Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457CrossRefGoogle Scholar
  343. 343.
    Brown RE (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111(1):1–9Google Scholar
  344. 344.
    Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Róg T, Bunker A (2014) Cholesterol level affects surface charge of lipid membranes in saline solution. Sci Rep 4:5005.  https://doi.org/10.1038/srep05005. https://www.nature.com/articles/srep05005#supplementary-informationCrossRefGoogle Scholar
  345. 345.
    Kamat VS, Beckman JE, Russell JA (1995) Enzyme activity in supercritical fluids, vol 15, no 1. Informa Healthcare, London, ROYAUME-UNIGoogle Scholar
  346. 346.
    Schuler I, Duportail G, Glasser N, Benveniste P, Hartmann M-A (1990) Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study. Biochim Biophys Acta Biomembr 1028(1):82–88CrossRefGoogle Scholar
  347. 347.
    Lindsey K, Pullen ML, Topping JF (2003) Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci 8(11):521–525.  https://doi.org/10.1016/j.tplants.2003.09.012CrossRefGoogle Scholar
  348. 348.
    Wang Z-Y, Wang Q, Chong K, Wang F, Wang L, Bai M, Jia C (2006) The brassinosteroid signal transduction pathway. Cell Res 16(5):427–434CrossRefGoogle Scholar
  349. 349.
    Mongrand S, Morel J, Laroche J, Claverol S, Carde J-P, Hartmann M-A, Bonneu M, Simon-Plas F, Lessire R, Bessoule J-J (2004) Lipid rafts in higher plant cells: purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279(35):36277–36286.  https://doi.org/10.1074/jbc.M403440200CrossRefGoogle Scholar
  350. 350.
    Laloi M, Perret A-M, Chatre L, Melser S, Cantrel C, Vaultier M-N, Zachowski A, Bathany K, Schmitter J-M, Vallet M, Lessire R, Hartmann M-A, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143(1):461–472.  https://doi.org/10.1104/pp.106.091496CrossRefGoogle Scholar
  351. 351.
    Silvestro D, Andersen TG, Schaller H, Jensen PE (2013) Plant sterol metabolism. Δ7-sterol-C5-desaturase (STE1/DWARF7), Δ5,7-sterol-Δ7-reductase (DWARF5) and Δ24-sterol-Δ24-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. PLoS One 8(2):e56429.  https://doi.org/10.1371/journal.pone.0056429CrossRefGoogle Scholar
  352. 352.
    Normén L, Dutta P, Lia Å, Andersson H (2000) Soy sterol esters and β-sitostanol ester as inhibitors of cholesterol absorption in human small bowel. Am J Clin Nutr 71(4):908–913CrossRefGoogle Scholar
  353. 353.
    Ikeda I, Tanaka K, Sugano M, Vahouny G, Gallo L (1988) Inhibition of cholesterol absorption in rats by plant sterols. J Lipid Res 29(12):1573–1582Google Scholar
  354. 354.
    Sharmila R, Sindhu G (2016) Modulation of angiogenesis, proliferative response and apoptosis by β-sitosterol in rat model of renal carcinogenesis. Indian J Clin Biochem 32(2):142–152CrossRefGoogle Scholar
  355. 355.
    Loizou S, Lekakis I, Chrousos GP, Moutsatsou P (2010) β-Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nutr Food Res 54(4):551–558.  https://doi.org/10.1002/mnfr.200900012CrossRefGoogle Scholar
  356. 356.
    Gupta M, Nath R, Srivastava N, Shanker K, Kishor K, Bhargava K (1980) Anti-inflammatory and antipyretic activities of β-sitosterol. Planta Med 39(06):157–163CrossRefGoogle Scholar
  357. 357.
    Awad A, Von Holtz R, Cone J, Fink C, Chen Y (1998) beta-sitosterol inhibits growth of HT-29 human colon cancer cells by activating the sphingomyelin cycle. Anticancer Res 18(1A):471–473Google Scholar
  358. 358.
    von Holtz RL, Fink CS, Awad AB (1998) β-sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutr Cancer 32:8CrossRefGoogle Scholar
  359. 359.
    Park C, Moon D-O, Rhu C-H, Choi BT, Lee WH, Kim G-Y, Choi YH (2007) β-Sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol Pharm Bull 30(7):1317–1323CrossRefGoogle Scholar
  360. 360.
    Zhao Y, Chang SK, Qu G, Li T, Cui H (2009) β-Sitosterol inhibits cell growth and induces apoptosis in SGC-7901 human stomach cancer cells. J Agric Food Chem 57(12):5211–5218CrossRefGoogle Scholar
  361. 361.
    Vundru SS, Kale RK, Singh RP (2013) β-sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells. BMC Complement Altern Med 13(1):280.  https://doi.org/10.1186/1472-6882-13-280CrossRefGoogle Scholar
  362. 362.
    Shuang R, Rui X, Wenfang L (2016) Phytosterols and dementia. Plant Foods Hum Nutr 71(4):347–354.  https://doi.org/10.1007/s11130-016-0574-1CrossRefGoogle Scholar
  363. 363.
    Burg VK, Grimm HS, Rothhaar TL, Grösgen S, Hundsdörfer B, Haupenthal VJ, Zimmer VC, Mett J, Weingärtner O, Laufs U (2013) Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neurosci 33(41):16072–16087CrossRefGoogle Scholar
  364. 364.
    Ostlund RE, Spilburg CA, Stenson WF (1999) Sitostanol administered in lecithin micelles potently reduces cholesterol absorption in humans. Am J Clin Nutr 70(5):826–831CrossRefGoogle Scholar
  365. 365.
    Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R, Participants SW (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc, Elsevier, Rochester, MN, Vol 78, pp 965–978Google Scholar
  366. 366.
    Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41(6):457–500CrossRefGoogle Scholar
  367. 367.
    Jonker D, Van der Hoek G, Glatz J, Homan C, Posthumus M, Katan M (1985) Combined determination of free, esterified and glycosilated plant sterols in foods. Nutr Rep Int 32:943–952Google Scholar
  368. 368.
    Lin X, Ma L, Racette SB, Spearie CLA, Ostlund RE (2009) Phytosterol glycosides reduce cholesterol absorption in humans. Am J Physiol-Gastrointest Liver Physiol 296(4):G931–G935CrossRefGoogle Scholar
  369. 369.
    Baumgartner S, Ras RT, Trautwein EA, Mensink RP, Plat J (2017) Plasma fat-soluble vitamin and carotenoid concentrations after plant sterol and plant stanol consumption: a meta-analysis of randomized controlled trials. Eur J Nutr 56(3):909–923.  https://doi.org/10.1007/s00394-016-1289-7CrossRefGoogle Scholar
  370. 370.
    Scholz B, Guth S, Engel KH, Steinberg P (2015) Phytosterol oxidation products in enriched foods: occurrence, exposure, and biological effects. Mol Nutr Food Res 59(7):1339–1352CrossRefGoogle Scholar
  371. 371.
    Kozubek A, Tyman JHP (2005) Bioactive phenolic lipids. In: Atta-ur-Rahman (ed) Studies in natural products chemistry: bioactive natural products (Part K), 1st edn. Elsevier, Amsterdam, pp 111–190CrossRefGoogle Scholar
  372. 372.
    Hadacek F (2017) Phenolic lipids in plants: functional diversity of.  https://doi.org/10.1007/978-94-007-7864-1_136-1
  373. 373.
    Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cell Mol Life Sci 67(6):841–860.  https://doi.org/10.1007/s00018-009-0193-1CrossRefGoogle Scholar
  374. 374.
    Barbini L, Lopez P, Ruffa J, Martino V, Ferraro G, Campos R, Cavallaro L (2006) Induction of apoptosis on human hepatocarcinoma cell lines by an alkyl resorcinol isolated from Lithraea molleoides. World J Gastroenterol 12(37):5959–5963.  https://doi.org/10.3748/wjg.v12.i37.5959CrossRefGoogle Scholar
  375. 375.
    Gąsiorowski K, Brokos B, Kozubek A, Oszmiański J (2000) The antimutagenic activity of two plant-derived compounds. A comparative cytogenetic study. Cell Mol Biol Lett 5(2):171–190Google Scholar
  376. 376.
    Gąsiorowski K, Szyba K, Brokos B, Kozubek A (1996) Antimutagenic activity of alkylresorcinols from cereal grains. Cancer Lett 106(1):109–115.  https://doi.org/10.1016/0304-3835(96)04294-2CrossRefGoogle Scholar
  377. 377.
    Begum P, Hashidoko Y, Tofazzal Islam M, Ogawa Y, Tahara S (2002) Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides. Z Naturforsch C 57:874.  https://doi.org/10.1515/znc-2002-9-1020CrossRefGoogle Scholar
  378. 378.
    Chitra M, Shyamala Devi CS, Sukumar E (2003) Antibacterial activity of embelin. Fitoterapia 74(4):401–403.  https://doi.org/10.1016/S0367-326X(03)00066-2CrossRefGoogle Scholar
  379. 379.
    Kubo J, Lee JR, Kubo I (1999) Anti-Helicobacter pylori agents from the cashew apple. J Agr Food Chem 47(2):533–537.  https://doi.org/10.1021/jf9808980CrossRefGoogle Scholar
  380. 380.
    Narasimhan B, Panghal A, Singh N, Dhake AS (2008) Efficiency of anacardic acid as preservative in tomato products. J Food Process Preserv 32(4):600–609.  https://doi.org/10.1111/j.1745-4549.2008.00201.xCrossRefGoogle Scholar
  381. 381.
    Lanfranchi D-A, Laouer H, El Kolli M, Prado S, Maulay-Bailly C, Baldovini N (2010) Bioactive phenylpropanoids from daucus crinitus Desf. from Algeria. J Agr Food Chem 58(4):2174–2179.  https://doi.org/10.1021/jf903760bCrossRefGoogle Scholar
  382. 382.
    McGovern TW, Barkley TM (1998) Botanical dermatology. Int J Dermatol 37(5):321–334.  https://doi.org/10.1046/j.1365-4362.1998.00385.xCrossRefGoogle Scholar
  383. 383.
    Torres de Pinedo A, Peñalver P, Pérez-Victoria I, Rondón D, Morales JC (2007) Synthesis of new phenolic fatty acid esters and their evaluation as lipophilic antioxidants in an oil matrix. Food Chem 105(2):657–665.  https://doi.org/10.1016/j.foodchem.2007.04.029CrossRefGoogle Scholar
  384. 384.
    Moo-Puc R, Caamal-Fuentes E, Peraza-Sánchez SR, Slusarz A, Jackson G, Drenkhahn SK, Lubahn DB (2015) Antiproliferative and antiestrogenic activities of bonediol an alkyl catechol from Bonellia macrocarpa. Biomed Res Int 2015:6.  https://doi.org/10.1155/2015/847457
  385. 385.
    Kubo I, Muroi H, Himejima M (1993) Structure-antibacterial activity relationships of anacardic acids. J Agric Food Chem 41:1016–1019CrossRefGoogle Scholar
  386. 386.
    Carvalho ALN, Annoni R, Torres LHL, Durao ACCS, Shimada ALB, Almeida FM, Hebeda CB, Lopes FDTQS, Dolhnikoff M, Martins MA, Silva LFF, Farsky SHP, Saldiva PHN, Ulrich CM, Owen RW, Marcourakis T, Trevisan MTS, Mauad T (2013) Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice. J Evid Based Complement Alternat Med 2013:549879.  https://doi.org/10.1155/2013/549879Google Scholar
  387. 387.
    Hamad F, Mubofu E (2015) Potential biological applications of bio-based anacardic acids and their derivatives. Int J Mol Sci 16(4):8569CrossRefGoogle Scholar
  388. 388.
    Baerson SR, Schröder J, Cook D, Rimando AM, Pan Z, Dayan FE, Noonan BP, Duke SO (2010) Alkylresorcinol biosynthesis in plants. Plant Signal Behav 5(10):1286–1289.  https://doi.org/10.4161/psb.5.10.13062CrossRefGoogle Scholar
  389. 389.
    Kahveci D, Laguerre M, Villeneuve P (2015) Phenolipids as new antioxidants: production, activity and potential applications. In: Ahmad MU, Xu X (eds) Polar lipids: biology, chemistry and technology. AOCS Press, UrbanaGoogle Scholar
  390. 390.
    Ross AB (2012) Present status and perspectives on the use of alkylresorcinols as biomarkers of wholegrain wheat and rye intake. J Nutr Metab 2012:462967CrossRefGoogle Scholar
  391. 391.
    Kruk J, Aboul-Enein B, Bernstein J, Marchlewicz M (2017) Dietary alkylresorcinols and cancer prevention: a systematic review. Eur Food Res Technol 243(10):1693–1710.  https://doi.org/10.1007/s00217-017-2890-6CrossRefGoogle Scholar
  392. 392.
    Chang H-S, Lin Y-J, Lee S-J, Yang C-W, Lin W-Y, Tsai I-L, Chen I-S (2009) Cytotoxic alkyl benzoquinones and alkyl phenols from Ardisia virens. Phytochemistry 70(17):2064–2071.  https://doi.org/10.1016/j.phytochem.2009.09.006CrossRefGoogle Scholar
  393. 393.
    Dayan FE, Rimando AM, Pan Z, Baerson SR, Gimsing AL, Duke SO (2010) Sorgoleone. Phytochemistry 71(10):1032–1039.  https://doi.org/10.1016/j.phytochem.2010.03.011CrossRefGoogle Scholar
  394. 394.
    Figueroa-Espinoza M-C, Villeneuve P (2005) Phenolic acids enzymatic lipophilization. J Agr Food Chem 53(8):2779–2787CrossRefGoogle Scholar
  395. 395.
    Viskupicova J, Maliar T (2017) Rutin fatty acid esters: from synthesis to biological health effects and application. J Food Nutr Res 56(3):232–243Google Scholar
  396. 396.
    Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agr Food Chem 49(11):5165–5170.  https://doi.org/10.1021/jf010697nCrossRefGoogle Scholar
  397. 397.
    Reddy KK, Shanker KS, Ravinder T, Prasad RBN, Kanjilal S (2010) Chemo-enzymatic synthesis and evaluation of novel structured phenolic lipids as potential lipophilic antioxidants. Eur J Lipid Sci Technol 112(5):600–608.  https://doi.org/10.1002/ejlt.200900200Google Scholar
  398. 398.
    Shahidi F, Zhong Y (2011) Revisiting the polar paradox theory: a critical overview. J Agr Food Chem 59(8):3499–3504CrossRefGoogle Scholar
  399. 399.
    Figueroa-Espinoza M, Villeneuve P (2005) Phenolic acids enzymatic lipophilization. J Agr Food Chem 53(8):2779–2787CrossRefGoogle Scholar
  400. 400.
    Laguerre M, Bayrasy C, Lecomte J, Chabi B, Decker EA, Wrutniak-Cabello C, Cabello G, Villeneuve P (2013) How to boost antioxidants by lipophilization? Biochimie 95(1):20–26.  https://doi.org/10.1016/j.biochi.2012.07.018CrossRefGoogle Scholar
  401. 401.
    Wang J, Shahidi F (2014) Acidolysis of p-coumaric acid with omega-3 oils and antioxidant activity of phenolipid products in in vitro and biological model systems. J Agr Food Chem 62(2):454–461CrossRefGoogle Scholar
  402. 402.
    Laguerre M, López Giraldo LJ, Lecomte J, Figueroa-Espinoza MC, Baréa B, Weiss J, Decker EA, Villeneuve P (2009) Chain length affects antioxidant properties of chlorogenate esters in emulsion: the cutoff theory behind the polar paradox. J Agr Food Chem 57(23):11335–11342CrossRefGoogle Scholar
  403. 403.
    Laguerre M, López Giraldo LJ, Jérôme Lecomte J, Figueroa-Espinoza MC, Baréa B, Weiss J, Decker EA, Villeneuve P (2010) Relationship between hydrophobicity and antioxidant ability of “Phenolipids” in emulsion: a parabolic effect of the chain length of rosmarinate esters. J Agr Food Chem 58(5):2869–2876CrossRefGoogle Scholar
  404. 404.
    Kubo I, Fujita K-i, Nihei K-i, Nihei A (2004) Antibacterial activity of akyl gallates against Bacillus subtilis. J Agr Food Chem 52(5):1072–1076.  https://doi.org/10.1021/jf034774lCrossRefGoogle Scholar
  405. 405.
    Katsoura MH, Polydera AC, Tsironis LD, Petraki MP, Rajačić SK, Tselepis AD, Stamatis H (2009) Efficient enzymatic preparation of hydroxycinnamates in ionic liquids enhances their antioxidant effect on lipoproteins oxidative modification. New Biotechnol 26(1):83–91.  https://doi.org/10.1016/j.nbt.2009.02.004CrossRefGoogle Scholar
  406. 406.
    Danihelová M, Viskupičová J, Šturdík E (2012) Lipophilization of flavonoids for their food, therapeutic and cosmetic applications. Acta Chim Slovaca 5:59.  https://doi.org/10.2478/v10188-012-0010-6Google Scholar
  407. 407.
    Figueroa-Espinoza MC, Laguerre M, Villeneuve P, Lecomte J (2013) From phenolics to phenolipids: optimizing antioxidants in lipid dispersions. Lipid Technol 25(6):131–134.  https://doi.org/10.1002/lite.201300277CrossRefGoogle Scholar
  408. 408.
    Ardhaoui M, Falcimaigne A, Engasser J-M, Moussou P, Pauly G, Ghoul M (2004) Acylation of natural flavonoids using lipase of candida antarctica as biocatalyst. J Mol Catal B-Enzym 29(1):63–67.  https://doi.org/10.1016/j.molcatb.2004.02.013CrossRefGoogle Scholar
  409. 409.
    Bok SH, Jeong TS, Lee SK, Kim JR, Moon SS, Choi MS (2001) Flavanone derivatives and composition for preventing or treating blood lipid level-related diseases comprising same. Patent US 20010006978A1Google Scholar
  410. 410.
    Chebil L, Humeau C, Falcimaigne A, Engasser J-M, Ghoul M (2006) Enzymatic acylation of flavonoids. Process Biochem 41(11):2237–2251.  https://doi.org/10.1016/j.procbio.2006.05.027CrossRefGoogle Scholar
  411. 411.
    Otto RT, Scheib H, Bornscheuer UT, Pleiss J, Syldatk C, Schmid RD (2000) Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids. J Mol Catal B-Enzym 8(4):201–211.  https://doi.org/10.1016/S1381-1177(99)00058-2CrossRefGoogle Scholar
  412. 412.
    Katsoura MH, Polydera AC, Tsironis L, Tselepis AD, Stamatis H (2006) Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency. J Biotechnol 123(4):491–503.  https://doi.org/10.1016/j.jbiotec.2005.12.022CrossRefGoogle Scholar
  413. 413.
    Cao S-L, Deng X, Xu P, Huang Z-X, Zhou J, Li X-H, Zong M-H, Lou W-Y (2017) Highly efficient enzymatic acylation of dihydromyricetin by the immobilized lipase with deep eutectic solvents as cosolvent. J Agr Food Chem 65(10):2084–2088.  https://doi.org/10.1021/acs.jafc.7b00011CrossRefGoogle Scholar
  414. 414.
    Youn SH, Kim HJ, Kim TH, Shin CS (2007) Lipase-catalyzed acylation of naringin with palmitic acid in highly concentrated homogeneous solutions. J Mol Catal B-Enzym 46(1):26–31.  https://doi.org/10.1016/j.molcatb.2007.02.002CrossRefGoogle Scholar
  415. 415.
    Humeau C, Girardin M, Rovel B, Miclo A (1998) Enzymatic synthesis of fatty acid ascorbyl esters. J Mol Catal B-Enzym 5(1):19–23.  https://doi.org/10.1016/S1381-1177(98)00090-3CrossRefGoogle Scholar
  416. 416.
    Humeau C, Girardin M, Coulon D, Miclo A (1995) Synthesis of 6-O-palmitoyl l-ascorbic acid catalyzed by Candida antartica lipase. Biotechnol Lett 17(10):1091–1094.  https://doi.org/10.1007/bf00143107CrossRefGoogle Scholar
  417. 417.
    Watanabe Y, Minemoto Y, Adachi S, Nakanishi K, Shimada Y, Matsuno R (2000) Lipase-catalyzed synthesis of 6-O-eicosapentaenoyl l-ascorbate in acetone and its autoxidation. Biotechnol Lett 22(8):637–640.  https://doi.org/10.1023/a:1005675111042CrossRefGoogle Scholar
  418. 418.
    Lee K-T, Akoh CC, Dawe DL (1999) Effects of structured lipid containing omega-3 and medium chain fatty acids on serum lipids and immunological variables in mice. J Food Biochem 23(2):197–208.  https://doi.org/10.1111/j.1745-4514.1999.tb00014.xCrossRefGoogle Scholar
  419. 419.
    Karboune S, St-Louis R, Kermasha S (2008) Enzymatic synthesis of structured phenolic lipids by acidolysis of flaxseed oil with selected phenolic acids. J Mol Catal B-Enzym 52:96–105.  https://doi.org/10.1016/j.molcatb.2007.10.015CrossRefGoogle Scholar
  420. 420.
    Akoh CC, Lee KT, Fomuso LB (1998) Synthesis of positional isomers of structured lipids with lipases as biocatalyst. In: Christophe AB (ed) Structural modified food fats: synthesis, biochemistry, and use. AOCS Press, Champaign, pp 46–72CrossRefGoogle Scholar
  421. 421.
    Sorour N, Karboune S, Saint-Louis R, Kermasha S (2012) Enzymatic synthesis of phenolic lipids in solvent-free medium using flaxseed oil and 3,4-dihydroxyphenyl acetic acid. Process Biochem 47(12):1813–1819.  https://doi.org/10.1016/j.procbio.2012.06.020CrossRefGoogle Scholar
  422. 422.
    Namal Senanayake SPJ, Shahidi F (2002) Enzyme-catalyzed synthesis of structured lipids via acidolysis of seal (Phoca groenlandica) blubber oil with capric acid. Food Res Int 35(8):745–752.  https://doi.org/10.1016/S0963-9969(02)00070-4CrossRefGoogle Scholar
  423. 423.
    Sun S, Zhu S, Bi Y (2014) Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil. Food Chem 158:292–295.  https://doi.org/10.1016/j.foodchem.2014.02.146CrossRefGoogle Scholar
  424. 424.
    Sabally K, Karboune S, St-Louis R, Kermasha S (2006) Lipase-catalyzed transesterification of dihydrocaffeic acid with flaxseed oil for the synthesis of phenolic lipids. J Biotechnol 127(1):167–176CrossRefGoogle Scholar
  425. 425.
    Sabally K, Karboune S, St-Louis R, Kermasha S (2006) Lipase-catalyzed transesterification of trilinolein or trilinolenin with selected phenolic acids. J Am Oil Chem Soc 83(2):101–107.  https://doi.org/10.1007/s11746-006-1181-3CrossRefGoogle Scholar
  426. 426.
    Karboune S, Safari M, Lue B-M, Yeboah FK, Kermasha S (2005) Lipase-catalyzed biosynthesis of cinnamoylated lipids in a selected organic solvent medium. J Biotechnol 119(3):281–290.  https://doi.org/10.1016/j.jbiotec.2005.03.012CrossRefGoogle Scholar
  427. 427.
    Aziz S, Dutilleul P, Kermasha S (2012) Lipase-catalyzed transesterification of krill oil and 3,4-dihydroxyphenyl acetic acid in solvent-free medium using response surface methodology. J Mol Catal B-Enzym 84:189–197.  https://doi.org/10.1016/j.molcatb.2012.05.011CrossRefGoogle Scholar
  428. 428.
    Sorour N, Karboune S, Saint-Louis R, Kermasha S (2012) Lipase-catalyzed synthesis of structured phenolic lipids in solvent-free system using flaxseed oil and selected phenolic acids as substrates. J Biotechnol 158(3):128–136.  https://doi.org/10.1016/j.jbiotec.2011.12.002CrossRefGoogle Scholar
  429. 429.
    Ciftci D, Saldaña MDA (2012) Enzymatic synthesis of phenolic lipids using flaxseed oil and ferulic acid in supercritical carbon dioxide media. J Supercrit Fluids 72:255–262.  https://doi.org/10.1016/j.supflu.2012.09.007CrossRefGoogle Scholar
  430. 430.
    Wildman RE (2007) Nutraceuticals and functional foods. In: Wildman RE (ed) Handbook of nutraceuticals and functional foods. CRC press, Boca Raton, pp 37–65Google Scholar
  431. 431.
    McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49(6):577–606CrossRefGoogle Scholar
  432. 432.
    Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15(1):61–72CrossRefGoogle Scholar
  433. 433.
    Velikov KP, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4(10):1964–1980CrossRefGoogle Scholar
  434. 434.
    McClements DJ (2010) Design of nano-laminated coatings to control bioavailability of lipophilic food components. J Food Sci 75(1):R30CrossRefGoogle Scholar
  435. 435.
    McClements DJ (2010) Emulsion design to improve the delivery of functional lipophilic components. Annu Rev Food Sci Technol 1:241–269CrossRefGoogle Scholar
  436. 436.
    McClements DJ (2015) Active ingredients. In: McClements DJ (ed) Nanoparticle-and microparticle-based delivery systems: encapsulation, protection and release of active compounds. CRC Press, Boca Raton, pp 1–22Google Scholar
  437. 437.
    Lauridsen C, Hedemann MS, Jensen SK (2001) Hydrolysis of tocopheryl and retinyl esters by porcine carboxyl ester hydrolase is affected by their carboxylate moiety and bile acids. J Nutr Biochem 12(4):219–224CrossRefGoogle Scholar
  438. 438.
    McClements DJ, Decker EA, Park Y (2008) Controlling lipid bioavailability through physicochemical and structural approaches. Crit Rev Food Sci Nutr 49(1):48–67CrossRefGoogle Scholar
  439. 439.
    Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A (2017) Improving in vivo efficacy of bioactive molecules: an overview of potentially antitumor phytochemicals and currently available lipid-based delivery systems. J Oncol 2017:7351976CrossRefGoogle Scholar
  440. 440.
    Kalepu S, Manthina M, Padavala V (2013) Oral lipid-based drug delivery systems–an overview. Acta Pharm Sin B 3(6):361–372CrossRefGoogle Scholar
  441. 441.
    Shrestha H, Bala R, Arora S (2014) Lipid-based drug delivery systems. J Pharm 2014  https://doi.org/10.1155/2014/801820
  442. 442.
    Kakkar V, Mishra AK, Chuttani K, Kaur IP (2013) Proof of concept studies to confirm the delivery of curcumin loaded solid lipid nanoparticles (C-SLNs) to brain. Int J Pharm 448(2):354–359CrossRefGoogle Scholar
  443. 443.
    Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47(1):65–81CrossRefGoogle Scholar
  444. 444.
    Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci 85(18):6949–6953CrossRefGoogle Scholar
  445. 445.
    Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T (2013) Multidrug resistance: physiological principles and nanomedical solutions. Adv Drug Deliv Rev 65(13):1852–1865.  https://doi.org/10.1016/j.addr.2013.09.018CrossRefGoogle Scholar
  446. 446.
    Barui S, Saha S, Mondal G, Haseena S, Chaudhuri A (2014) Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature. Biomaterials 35(5):1643–1656CrossRefGoogle Scholar
  447. 447.
    Humberstone AJ, Charman WN (1997) Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev 25(1):103–128CrossRefGoogle Scholar
  448. 448.
    Liu Y, Feng N (2015) Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interf Sci 221:60–76CrossRefGoogle Scholar
  449. 449.
    Liu J, Liu J, Xu H, Zhang Y, Chu L, Liu Q, Song N, Yang C (2014) Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine 9:197Google Scholar
  450. 450.
    Wang X-X, Li Y-B, Yao H-J, Ju R-J, Zhang Y, Li R-J, Yu Y, Zhang L, Lu W-L (2011) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32(24):5673–5687CrossRefGoogle Scholar
  451. 451.
    Chen C-C, Hsieh D-S, Huang K-J, Chan Y-L, Hong P-D, Yeh M-K, Wu C-J (2014) Improving anticancer efficacy of (−)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des Devel Ther 8:459Google Scholar
  452. 452.
    Manju S, Sreenivasan K (2012) Gold nanoparticles generated and stabilized by water soluble curcumin–polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci 368(1):144–151CrossRefGoogle Scholar
  453. 453.
    Moorthi C, Kathiresan K (2013) Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: a novel approach to target and treat multidrug-resistant cancers. J Med Hypotheses Ideas 7(1):15–20.  https://doi.org/10.1016/j.jmhi.2012.10.005CrossRefGoogle Scholar
  454. 454.
    Torres CF, Vázquez L, Señoráns FJ, Reglero G (2009) Enzymatic synthesis of short-chain diacylated alkylglycerols: a kinetic study. Process Biochem 44(9):1025–1031CrossRefGoogle Scholar
  455. 455.
    Madrona A, Pereira-Caro G, Mateos R, Rodríguez G, Trujillo M, Fernández-Bolaños J, Espartero JL (2009) Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters. Molecules 14(5):1762–1772CrossRefGoogle Scholar
  456. 456.
    Corzo-Martínez M, Vázquez L, Arranz-Martínez P, Menéndez N, Reglero G, Torres CF (2016) Production of a bioactive lipid-based delivery system from ratfish liver oil by enzymatic glycerolysis. Food Bioprod Process 100:311–322CrossRefGoogle Scholar
  457. 457.
    Lawrence T, Willoughby D A, Gilroy D W (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2(10):787–795Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Luis Vázquez
    • 1
  • Marta Corzo-Martínez
    • 1
  • Pablo Arranz-Martínez
    • 1
  • Elvira Barroso
    • 1
  • Guillermo Reglero
    • 1
    • 2
  • Carlos Torres
    • 1
  1. 1.Department of Production and Characterization of Novel FoodsInstitute of Food Science Research (CIAL,CSIC-UAM)MadridSpain
  2. 2.Department of Production and Development of Foods for HealthIMDEA-Food Institute, CEI (UAM-CSIC)MadridSpain

Personalised recommendations