Advertisement

Bioactive Food Components in the Prevention of Cardiovascular Diseases

  • Arti Parihar
  • Mordhwaj S. Parihar
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Cardiovascular diseases (CVDs) remain one of the leading causes of death globally. The risk factors such as lipids, lipoproteins, and inflammation play a critical role in CVD. Lifestyle factors directly influence the risk of CVD. Understanding of the risk factors and the disease-causing mechanisms will lead to novel therapeutic treatments. Emerging data have explored the utility of natural food-based strategies in the management of diseases. Increasing interest has been grown up in recent years on the health-related products of food industry and to understand how foods products can help and maintain the individual cardiovascular health. Plant extracts rich in bioactive components could be used as the functional ingredients for providing many health benefits. The recent advances in health benefits of bioactive components provide novel therapeutic approaches, which have played an important role in the reductions of CVD worldwide. This chapter presents a critical review of the potential benefits of bioactive foods consumed through diet to reduce the incidence of cardiovascular disease.

Keywords

Cardiovascular disease Coronary heart disease Atherogenesis Dyslipidemia Inflammation Active ingredients Bioactive components of foods 

References

  1. 1.
    Ferrieres J (2004) The French paradox: lessons for other countries. Heart 90(1):107–111CrossRefGoogle Scholar
  2. 2.
    Martínez-Augustin O, Aguilera CM, Gil-Campos M et al (2012) Bioactive anti-obesity food components. Int J Vitam Nutr Res 82:148–156CrossRefGoogle Scholar
  3. 3.
    World Health Organization: Obesity and Overweight (2017). http://www.who.int/mediacentre/factsheets/fs311/en/
  4. 4.
    Micha R, Peñalvo JL, Cudhea F et al (2017) Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA 317(9):912–924CrossRefGoogle Scholar
  5. 5.
    Fiscella K, Tancredi D (2008) Socioeconomic status and coronary heart disease risk prediction. JAMA 300(22):2666–2668CrossRefGoogle Scholar
  6. 6.
    Clark AM, DesMeules M, Luo W et al (2009) Socioeconomic status and cardiovascular disease: risks and implications for care. Nat Rev Cardiol 6:712–722CrossRefGoogle Scholar
  7. 7.
    World Health Organization: Cardiovascular disease (2017). http://www.who.int/mediacentre/factsheets/fs317/en/
  8. 8.
    Mozaffarian D, Furberg CD, Psaty BM et al (2008) Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation 118(8):800–807CrossRefGoogle Scholar
  9. 9.
    Gersh BJ, Sliwa K, Mayosi BM et al (2010) Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur Heart J 31(6): 642–648CrossRefGoogle Scholar
  10. 10.
    Yang W, Lu J, Weng J et al (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362(12):1090–1101CrossRefGoogle Scholar
  11. 11.
    Mallika V, Goswami B, Rajappa M (2007) Atherosclerosis pathophysiology and the role of novel risk factors: a clinicobiochemical perspective. Angiology 58:513–512CrossRefGoogle Scholar
  12. 12.
    Gordon DJ, Probstfield JL, Garrison RJ et al (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8–15CrossRefGoogle Scholar
  13. 13.
    Xavier HT, Izar MC, Faria NJR et al (2013) V Brazilian guideline on dyslipidemia and prevention of atherosclerosis Brazilian. Arq Bras Cardiol 101:1–20CrossRefGoogle Scholar
  14. 14.
    Beisiegel U (1998) Lipoprotein metabolism. Eur Heart J 19(Suppl A):A20–A23Google Scholar
  15. 15.
    Rosin S, Ojansivu I, Kopu A, Keto-Tokoi M, Gylling H (2015) Optimal use of plant Stanol Ester in the Management of Hypercholesterolemia. Cholesterol 2015:706970CrossRefGoogle Scholar
  16. 16.
    Hunter PM, Hegele RA (2017) Functional foods and dietary supplements for the management of dyslipidaemia. Nat Rev Endocrinol 13(5):278–288CrossRefGoogle Scholar
  17. 17.
    Kitts DD (1994) Bioactive substances in food: identification and potential uses. Can J Physiol Pharmacol 72:423–434CrossRefGoogle Scholar
  18. 18.
    Kris-Etherton PM, Hecker KD, Bonanome A et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(suppl 9B):71S–88SCrossRefGoogle Scholar
  19. 19.
    Weaver CM (2014) Bioactive foods and ingredients for health. Adv Nutr 5:306S–311SCrossRefGoogle Scholar
  20. 20.
    Langella C, Naviglio D, Marino M et al (2015) Study of the effects of a diet supplemented with active components on lipid and glycaemic profiles. Nutrition 31:180–186CrossRefGoogle Scholar
  21. 21.
    Scicchitanoa P, Camelib M, Maielloc M et al (2014) Nutraceuticals and dyslipidaemia: beyond the common therapeutics. J Funct Foods 2014:11–32CrossRefGoogle Scholar
  22. 22.
    Badimon L, Chagas P, Chiva-Blanch G (2017) Diet and cardiovascular disease: effects of foods and nutrients in classical and emerging cardiovascular risk factors. Curr Med Chem 24:1. [Epub ahead of print]CrossRefGoogle Scholar
  23. 23.
    USDA (2010) Dietary guidelines for Americans. Available from: http://www.health.gov/dietaryguidelines/2010.asp
  24. 24.
    Massaro M, Scoditti E, Carluccio MA et al (2010) Nutraceuticals and prevention of atherosclerosis: focus on omega-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovasc Ther 28:e13–e19CrossRefGoogle Scholar
  25. 25.
    Chomistek AK, Manson JE, Stefanick ML et al (2013) Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women’s health initiative. J Am Coll Cardiol 61:2346–2354CrossRefGoogle Scholar
  26. 26.
    Do KA, Gree A, Guthrie JR et al (2000) Longitudinal study of risk factors for coronary heart disease across the menopausal transition. Am J Epidemiol 151:584–593CrossRefGoogle Scholar
  27. 27.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874CrossRefGoogle Scholar
  28. 28.
    Plutzky J (2001) Inflammatory pathways in atherosclerosis and acute coronary syndromes. Am J Cardiol 88:10K–15KCrossRefGoogle Scholar
  29. 29.
    Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126CrossRefGoogle Scholar
  30. 30.
    Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866CrossRefGoogle Scholar
  31. 31.
    Cuaz-Perolin C, Billiet L, Bauge E et al (2008) Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE−/− mice. Arterioscler Thromb Vasc Biol 28(2):272–277CrossRefGoogle Scholar
  32. 32.
    Elahi M, Matata B (2005) Blood-dependent redox activity during extracorporeal circulation in health and disease. Cardiology 1:156–157Google Scholar
  33. 33.
    Wilson SH, Best PJ, Edwards WD et al (2002) Nuclear factor-kappa B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis 160(1):147–153CrossRefGoogle Scholar
  34. 34.
    Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551CrossRefGoogle Scholar
  35. 35.
    Hubert HB, Feinleib M, McNamara PM et al (1983) Obesity as an independent risk factor for cardiovascular disease: a 26 year follow-up of participants in the Framingham heart study. Circulation 67(5):968–977CrossRefGoogle Scholar
  36. 36.
    Klop B, Elte JWF, Cabezas MC (2013) Dyslipidemia in obesity: mechanisms and potential targets. Forum Nutr 5(4):1218–1240Google Scholar
  37. 37.
    Esmaillzadeh A, Azadbakht L (2008) Food intake patterns may explain the high prevalence of cardiovascular risk factors among Iranian women. J Nutr 138(8):1469–1475Google Scholar
  38. 38.
    Lopez AD, Mathers CD, Ezzati M et al (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757CrossRefGoogle Scholar
  39. 39.
    Kjeldsen SE (2017) Hypertension and cardiovascular risk: general aspects. Pharmacol Res. pii: S1043-6618 (17)31118-0. [Epub ahead of print]Google Scholar
  40. 40.
    Malik S, Wong ND, Franklin SS et al (2004) Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease and all causes in United States adults. Circulation 110:1245–1250CrossRefGoogle Scholar
  41. 41.
    Tasic I, Lovic D (2018) Hypertension and cardiometabolic disease. Front Biosci (Schol Ed) 10:166–174CrossRefGoogle Scholar
  42. 42.
    Watkins PJ (2003) ABC of diabetes: cardiovascular disease, hypertension and lipids. Br Med J 326:874–876CrossRefGoogle Scholar
  43. 43.
    Kugiyama K, Yasue H, Ohgushi M et al (1996) Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers. J Am Coll Cardiol 28(5):1161–1167CrossRefGoogle Scholar
  44. 44.
    Barua RS, Ambrose JA, Srivastava S et al (2003) Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells. Circulation 107(18):2342–2347CrossRefGoogle Scholar
  45. 45.
    Deliconstantinos G, Villiotou V, Stavrides JC (1994) Scavenging effects of hemoglobin and related heme containing compounds on nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke: a new method for protection against the dangerous cigarette constituents. Anticancer Res 14(6B):2717–2726Google Scholar
  46. 46.
    Bloomer RJ (2007) Decreased blood antioxidant capacity and increased lipid peroxidation in young cigarette smokers compared to nonsmokers: impact of dietary intake. Nutr J 6:39–43CrossRefGoogle Scholar
  47. 47.
    Wakabayashi I (2009) Impact of body weight on the relationship between alcohol intake and blood pressure. Alcohol Alcohol 44(2):204–210CrossRefGoogle Scholar
  48. 48.
    Ravera A, Carubelli V, Sciatti E et al (2016) Nutrition and cardiovascular disease: finding the perfect recipe for cardiovascular health. Forum Nutr 8(6):363–390Google Scholar
  49. 49.
    Saura-Calixto F, Goni I (2009) Definition of the Mediterranean diet based on bioactive compounds. Crit Rev Food Sci Nutr 49(2):145–152CrossRefGoogle Scholar
  50. 50.
    Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62CrossRefGoogle Scholar
  51. 51.
    Vincent-Baudry S, Defoort C, Gerber M et al (2005) The Medi-RIVAGE study: reduction of cardiovascular disease risk factors after a 3-mo intervention with a Mediterranean-type diet or a low-fat diet. Am J Clin Nutr 82:964–971Google Scholar
  52. 52.
    Alissa EM, Ferns GA (2012) Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases. J Nutr Metab 2012:1–16CrossRefGoogle Scholar
  53. 53.
    Keys A, Menotti A, Karvonen MJ et al (1986) The diet and 15-year death rate in the seven countries study. Am J Epidemiol 124:903–915CrossRefGoogle Scholar
  54. 54.
    Knoops KT, de Groot LC, Kromhout D et al (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292: 1433–1439CrossRefGoogle Scholar
  55. 55.
    Fidanza F (1991) The Mediterranean Italian diet: keys to contemporary thinking. Proc Nutr Soc 50:519–526CrossRefGoogle Scholar
  56. 56.
    Kromhout D, Keys A, Aravanis C et al (1989) Food consumption patterns in the 1960s in seven countries. Am J Clin Nutr 49:889–894Google Scholar
  57. 57.
    Panagiotakos DB, Pitsavos C, Polychronopoulos E et al (2004) Can a Mediterranean diet moderate the development and clinical progression of coronary heart disease? A systematic review. Med Sci Monit 10(8):RA193–RA198Google Scholar
  58. 58.
    Martinez-Gonzalez MA, Bes-Rastrollo M, Serra-Majem L et al (2009) Mediterranean food pattern and the primary prevention of chronic disease: recent developments. Nutr Rev 67(suppl 1):S111–S116CrossRefGoogle Scholar
  59. 59.
    Kafatos A, Diacatou A, Voukiklaris G et al (1997) Heart disease risk-factor status and dietary changes in the Cretan population over the past 30 y: the seven countries study. Am J Clin Nutr 65:1882–1886Google Scholar
  60. 60.
    Menotti A, Keys A, Kromhout D et al (1993) Inter-cohort differences in coronary heart disease mortality in the 25-year follow-up of the seven countries study. Eur J Epidemiol 9:527–536CrossRefGoogle Scholar
  61. 61.
    Martinez-Gonzalez MA, Garcia-Lopez M, Bes-Rastrollo M et al (2011) Mediterranean diet and the incidence of cardiovascular disease: a Spanish cohort. Nutr Metab Cardiovasc Dis 21:237–244CrossRefGoogle Scholar
  62. 62.
    Estruch R, Ros E, Martinez-Gonzalez MA (2013) Mediterranean diet for primary prevention of cardiovascular disease. N Engl J Med 369:676–677Google Scholar
  63. 63.
    Nagai T, Inoue R (2004) Preparation and functional properties of water extract and alkaline extract of royal jelly. Food Chem 84:181–186CrossRefGoogle Scholar
  64. 64.
    Mozaffarian D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity – a comprehensive review. Circulation 133(2):187–225CrossRefGoogle Scholar
  65. 65.
    Parihar P, Parihar MS (2017) Metabolic enzymes deregulation in heart failure: the prospective therapy. Heart Fail Rev 22(1):109–121CrossRefGoogle Scholar
  66. 66.
    Boileau AC, Merchen NR, Wasson K et al (1999) Cis-lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. J Nutr 129:1176–1181Google Scholar
  67. 67.
    Re R, Fraser PD, Long M, Bramley PM et al (2001) Isomerization of lycopene in the gastric milieu. Biochem Biophys Res Commun 281:576–581CrossRefGoogle Scholar
  68. 68.
    Nguyen ML, Schwartz SJ (1998) Lycopene stability during food processing. Proc Soc Exp Biol Med 218:101–105CrossRefGoogle Scholar
  69. 69.
    Gupta R, Kopec RE, Schwartz SJ et al (2011) Combined pressure-temperature effects on carotenoid retention and bioaccessibility in tomato juice. J Agric Food Chem 59:7808–7817CrossRefGoogle Scholar
  70. 70.
    Porrini M, Riso P, Testolin G (1998) Absorption of lycopene from single or daily portions of raw and processed tomato. Br J Nutr 80:353–361CrossRefGoogle Scholar
  71. 71.
    van het Hof KH, de Boer BC, Tijburg LB et al (2000) Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. J Nutr 130:1189–1196Google Scholar
  72. 72.
    Gartner C, Stahl W, Sies H (1997) Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 66:116–122Google Scholar
  73. 73.
    Brown MJ, Ferruzzi MG, Nguyen ML et al (2004) Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr 80:396–403Google Scholar
  74. 74.
    Paterson E, Gordon MH, Niwat C et al (2006) Supplementation with fruit and vegetable soups and beverages increases plasma carotenoid concentrations but does not alter markers of oxidative stress or cardiovascular risk factors. J Nutr 136(11):2849–2855Google Scholar
  75. 75.
    Sesso HD, Liu S, Gaziano JM et al (2003) Dietary lycopene, tomato-based food products and cardiovascular disease in women. J Nutr 133(7):2336–2341Google Scholar
  76. 76.
    Rissanen TH, Voutilainen S, Nyyssönen K et al (2003) Serum lycopene concentrations and carotid atherosclerosis: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 77(1):133–138Google Scholar
  77. 77.
    Arab L, Steck S (2000) Lycopene and cardiovascular disease. Am J Clin Nutr 71(6 Suppl): 1691S–1695SGoogle Scholar
  78. 78.
    Agarwal S, Rao AV (1998) Tomato lycopene and low density lipoprotein oxidation: a human dietary intervention study. Lipids 33(10):981–984CrossRefGoogle Scholar
  79. 79.
    Shen YC, Chen SL, Wang CK (2007) Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. J Agric Food Chem 55(16):6475–6481CrossRefGoogle Scholar
  80. 80.
    Bohn T, Blackwood M, Francis D et al (2013) Bioavailability of phytochemical constituents from a novel soy fortified lycopene rich tomato juice developed for targeted cancer prevention trials. Nutr Cancer 65(6):919–929CrossRefGoogle Scholar
  81. 81.
    Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7CrossRefGoogle Scholar
  82. 82.
    Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584CrossRefGoogle Scholar
  83. 83.
    Tripoli E, La Guardia M, Giammanco S et al (2007) Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem 104:466–479CrossRefGoogle Scholar
  84. 84.
    Lamuela-Raventos RM, Romero-Perez AI, Andres-Lacueva C et al (2005) Review: health effects of cocoa flavonoids. Food Sci Technol Int 11(3):159–176CrossRefGoogle Scholar
  85. 85.
    Benavente-Garcia O, Castillo J, Marin FR et al (1997) Uses and properties of citrus flavonoids. J Agric Food Chem 45(12):6505–6515CrossRefGoogle Scholar
  86. 86.
    Furusawa M, Tsuchiya H, Nagayama M (2003) Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onion. J Health Sci 49(6):475–480CrossRefGoogle Scholar
  87. 87.
    Chen XQ, Hu T, Han Y et al (2016) Preventive effects of Catechins on cardiovascular disease. Molecules 21(12):1759–1765CrossRefGoogle Scholar
  88. 88.
    Legeay S, Rodier M, Fillon L et al (2015) Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome. Nutrients 7(7):5443–68Google Scholar
  89. 89.
    Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81:292S–297SGoogle Scholar
  90. 90.
    Koo SI, Green NS (2007) Tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 18(3):179–183CrossRefGoogle Scholar
  91. 91.
    Ahmad RS, Butt MS, Sultan MT et al (2015) Preventive role of green tea catechins from obesity and related disorders especially hypercholesterolemia and hyperglycemia. J Transl Med 13:79–85CrossRefGoogle Scholar
  92. 92.
    Kipshidze N, Dangas G, Tsapenko M et al (2004) Role of the endothelium in modulating neointimal formation-Vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol 2004(44):733–739Google Scholar
  93. 93.
    Bogdanski P, Suliburska J, Szulinska M et al (2012) Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves, parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 32:421–427CrossRefGoogle Scholar
  94. 94.
    Choi JS, Choi YJ, Shin SY et al (2008) Dietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: role of MAPK- and JAK/STAT-signaling. J Nutr 138(6):983–990Google Scholar
  95. 95.
    Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261CrossRefGoogle Scholar
  96. 96.
    Doerge DR, Chang HC, Churchwell MI (2000) Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry. Drug Metab Dispos 283:298–307Google Scholar
  97. 97.
    Rowland I, Faughnan M, Hoey L (2003) Bioavailability of phyto-estrogens. Br J Nutr 89(Suppl 1):S45–S58Google Scholar
  98. 98.
    Lissin LW, Cooke JP (2000) Phytoestrogens and cardiovascular health. J Am Coll Cardiol 35:1403–1410CrossRefGoogle Scholar
  99. 99.
    Colditz GA, Willett WC, Stampfer MJ et al (1987) Menopause and the risk of coronary heart disease in women. N Engl J Med 316:1105–1110CrossRefGoogle Scholar
  100. 100.
    Parker WH, Broder MS, Chang E et al (2009) Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses’ health study. Obstet Gynecol 113: 1027–1037CrossRefGoogle Scholar
  101. 101.
    Shimazu T, Inoue M, Sasazuki S et al (2011) Plasma isoflavones and the risk of lung cancer in women: a nested case–control study in Japan. Cancer Epidemiol Biomarkers Prev 20:419–427CrossRefGoogle Scholar
  102. 102.
    Kurahashi N, Iwasaki M, Sasazuki S et al (2007) Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomarkers Prev 16:538–545CrossRefGoogle Scholar
  103. 103.
    Kokubo Y, Iso H, Ishihara J, Okada K et al (2007) Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan public health center based (JPHC) study cohort I. Circulation 116:2553–2562CrossRefGoogle Scholar
  104. 104.
    Gencel VB, Benjamin MM, Bahou SN et al (2012) Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Rev Med Chem 12(2):149–174CrossRefGoogle Scholar
  105. 105.
    Takahashi M, Ikeda U, Masuyama JI et al (1996) Monocyte-endothelial cell interaction induces expression of adhesion molecules on human umbilical cord endothelial cells. Cardiovasc Res 32:422–429CrossRefGoogle Scholar
  106. 106.
    Huang FC, Kuo HC, Huang YH et al (2017) Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy: implication for the treatment of Kawasaki disease. BMC Pharmacol Toxicol 18(1):3–11CrossRefGoogle Scholar
  107. 107.
    Hao HD, He LR (2004) Mechanisms of cardiovascular protection by resveratrol. J Med Food 7(3):290–298CrossRefGoogle Scholar
  108. 108.
    Pirola L, Frojdo S (2008) Resveratrol: one molecule, many targets. IUBMB Life 60(5): 323–332CrossRefGoogle Scholar
  109. 109.
    Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 7(8):1020–1035CrossRefGoogle Scholar
  110. 110.
    Yang X, Yang J, Hu J et al (2015) Apigenin attenuates myocardial ischemia/reperfusion injury via the inactivation of p38 mitogen activated protein kinase. Mol Med Rep 12(5):6873–6878CrossRefGoogle Scholar
  111. 111.
    Zhu ZY, Gao T, Huang J et al (2016) Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-1 alpha in rats. Food Funct 7(4):1992–1998CrossRefGoogle Scholar
  112. 112.
    Zhang S, Liu X, Sun C et al (2016) Apigenin attenuates experimental autoimmune myocarditis by modulating Th1/Th2 cytokine balance in mice. Inflammation 39(2):678–686CrossRefGoogle Scholar
  113. 113.
    Nicholas C, Batra S, Vargo MA et al (2007) Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol 179(10):7121–7127CrossRefGoogle Scholar
  114. 114.
    Zhang T, Yan T, Du J et al (2015) Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chem Biol Interact 233:46–55CrossRefGoogle Scholar
  115. 115.
    Li F, Lang F, Zhang H et al (2017) Apigenin alleviates endotoxin-induced myocardial toxicity by modulating inflammation, oxidative stress, and autophagy. Oxidative Med Cell Longev 2017:1–10Google Scholar
  116. 116.
    Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51CrossRefGoogle Scholar
  117. 117.
    Dinkova-Kostova AT (2010) The effectiveness of the isothiocyanate sulforaphane in chemoprotection. Acta Hortic 867:27–36CrossRefGoogle Scholar
  118. 118.
    Barba FJ, Nikmaram N, Roohinejad S et al (2016) Glucosinolates and their breakdown products: impact of processing. Front Nutr 3:24CrossRefGoogle Scholar
  119. 119.
    Dong Z, Shang H, Chen YQ et al (2016) Sulforaphane protects pancreatic acinar cell injury by modulating Nrf2-mediated oxidative stress and NLRP3 inflammatory pathway. Oxidative Med Cell Longev 2016:1–12Google Scholar
  120. 120.
    Blekkenhorst LC, Bondonno CP, Lewis JR et al (2017) Cruciferous and allium vegetable intakes are inversely associated with 15 year atherosclerotic vascular disease deaths in older adult women. J Am Heart Assoc 6:1–22CrossRefGoogle Scholar
  121. 121.
    Briggs WH, Xiao H, Parkin KL et al (2000) Differential inhibition of human platelet aggregation by selected allium thiosulfinates. J Agric Food Chem 48(11):5731–5735CrossRefGoogle Scholar
  122. 122.
    Hubbard GP, Stevens JM, Cicmil M et al (2003) Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J Thromb Haemost 1(5):1079–1088CrossRefGoogle Scholar
  123. 123.
    Rimando AM, Kalt W, Magee JB et al (2004) Resveratrol, Pterostilbene, and Piceatannol in Vaccinium Berries. J Agric Food Chem 52(15):4713–4719CrossRefGoogle Scholar
  124. 124.
    Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342CrossRefGoogle Scholar
  125. 125.
    Huang JP, Huang SS, Deng JY et al (2010) Insulin and resveratrol act synergistically, preventing cardiac dysfunction in diabetes, but the advantage of resveratrol in diabetics with acute heart attack is antagonized by insulin. Free Radic Biol Med 49(11):1710–1721CrossRefGoogle Scholar
  126. 126.
    Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122CrossRefGoogle Scholar
  127. 127.
    Zafra-Stone S, Yasmin T, Bagchi M et al (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51(6):675–683CrossRefGoogle Scholar
  128. 128.
    Mazza G, Kay CD, Cottrell T et al (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50(26):7731–7737CrossRefGoogle Scholar
  129. 129.
    Felgines C, Talavera S, Gonthier MP et al (2003) Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J Nutr 133(5):1296–1301Google Scholar
  130. 130.
    Kay CD, Mazza GJ, Holub BJ (2005) Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr 135(11):2582–2588Google Scholar
  131. 131.
    Jiang Y, Dai M, Nie WJ et al (2017) Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats. J Ethnopharmacol 200:228–235CrossRefGoogle Scholar
  132. 132.
    Mink PJ, Scrafford CG, Barraj LM et al (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85(3):895–909Google Scholar
  133. 133.
    Rimm EB, Giovannucci EL, Willett WC et al (1991) Prospective study of alcohol consumption and risk of coronary disease in man. Lancet 338(8765):464–468CrossRefGoogle Scholar
  134. 134.
    Klatsky AL (2001) Could abstinence from alcohol be hazardous to your health? Int J Epidemiol 30:739–742CrossRefGoogle Scholar
  135. 135.
    Acquaviva R, Russo A, Galvano F et al (2003) Cyanidin and cyanidin 3-O-beta-D-glucoside as DNA cleavage protectors and antioxidants. Cell Biol Toxicol 19:243–252CrossRefGoogle Scholar
  136. 136.
    Lazze MC, Pizzala R, Savio M et al (2003) Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells. Mutat Res 535:103–115CrossRefGoogle Scholar
  137. 137.
    Lefevre M, Wiles JE, Zhang X et al (2008) Gene expression microarray analysis of the effects of grape anthocyanins in mice: a test of a hypothesis-generating paradigm. Metabolism 57(7 Suppl 1):S52–57Google Scholar
  138. 138.
    Ramirez-Tortosa C, Andersen ØM, Gardner PT et al (2001) Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med 31:1033–1037CrossRefGoogle Scholar
  139. 139.
    Rossi A, Serraino I, Dugo P et al (2003) Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res 37:891–900CrossRefGoogle Scholar
  140. 140.
    Sumner MD, Elliott-Eller M, Weidner G et al (2005) Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am J Cardiol 96:810–814CrossRefGoogle Scholar
  141. 141.
    Demrow HS, Sllane PR, Folts JD (1995) Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 91: 1182–1188CrossRefGoogle Scholar
  142. 142.
    Nofer JR, Kehrel B, Fobker M et al (2002) HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 161:1–16CrossRefGoogle Scholar
  143. 143.
    Francis GA (2000) High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences. Biochim Biophys Acta 1483:217–235CrossRefGoogle Scholar
  144. 144.
    Hillstrom RJ, Yacapin-Ammons AK et al (2003) Vitamin C inhibits lipid oxidation in human HDL. J Nutr 133(10):3047–3051Google Scholar
  145. 145.
    Moser MA, Chun OK (2016) Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci 17(8):1328–1336CrossRefGoogle Scholar
  146. 146.
    Spencer AP, Carson DS, Crouch MA (1999) Vitamin E and coronary artery disease. Arch Intern Med 159(12):1313–1320CrossRefGoogle Scholar
  147. 147.
    Laureaux C, Therond P, Bonnefont-Rousselot D et al (1997) α-tocopherol enrichment of high-density lipoproteins: stabilization of hydroperoxides produced during copper oxidation. Free Radic Biol Med 22:185–194CrossRefGoogle Scholar
  148. 148.
    Arrol S, Mackness MI, Durrington PN (2000) Vitamin E supplementation increases the resistance of both LDL and HDL to oxidation and increases cholesteryl ester transfer activity. Atherosclerosis 150:129–134CrossRefGoogle Scholar
  149. 149.
    Schnel JW, Anderson RA, Stegner JE et al (2001) Effects of a high polyunsaturated fat diet and vitamin E supplementation on high-density lipoprotein oxidation in humans. Atherosclerosis 159:459–466CrossRefGoogle Scholar
  150. 150.
    Jaouad L, Milochevitch C, Khalil A (2003) PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity. Free Radic Res 37:77–83CrossRefGoogle Scholar
  151. 151.
    Salonen JT, Salonen R, Penttila I et al (1985) Serum fatty acids, apolipoproteins, selenium and vitamin antioxidants and the risk of death from coronary artery disease. Am J Cardiol 56:226–231CrossRefGoogle Scholar
  152. 152.
    Kok FJ, deBruijn AM, Vermeeren R et al (1987) Serum selenium, vitamin antioxidants, and cardiovascular mortality: a 9-year follow-up study in the Netherlands. Am J Clin Nutr 45:462–468Google Scholar
  153. 153.
    Salonen JT, Salonen R, Seppänen K et al (1988) Relationship of serum selenium and antioxidants to plasma lipoproteins, platelet aggregability and prevalent ischemic heart disease in eastern Finnish men. Atherosclerosis 70:155–160CrossRefGoogle Scholar
  154. 154.
    Stampfer MJ, Hennekens CH, Manson JE et al (1993) Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 328(20):1444–1449CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Bellingham Technical CollegeBellinghamUSA
  2. 2.School of Studies in Zoology & BiotechnologyVikram UniversityUjjainIndia

Personalised recommendations