Skip to main content

Bioactive Peptides From Fish Protein By-Products

  • Living reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

The interest in fish processing by-products and underutilized catch for the production of biofunctional food ingredients has increased in the last number of decades. These marine-derived components contain a significant quantity of protein, which is normally processed into low-value products such as animal feed, fishmeal, and fertilizer. However, due to the global demand for high-quality protein and the need for sustainable production and processing of landed material, the valorization of proteins and other nutrients from fish processing by-products has significantly increased. Fish processing by-products contain significant quantities of high-quality protein, which can be exploited as sources of essential nitrogenous nutrients and biologically active peptides. Bioactive peptides, including those from fish processing by-products, have been reported to possess the ability to beneficially modulate physiological processes associated with noncommunicable diseases. These short peptides, which are encrypted within the primary sequence of the parent protein and are released during food processing or gastrointestinal digestion, could have a role in the prevention and management of these diseases. This chapter reviews the recent literature on the processing and utilization of proteins and protein hydrolysates from fish processing by-products and underutilized fish species with a particular focus on their bioactive properties and peptide sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Teh LCL, Sumaila UR (2013) Contribution of marine fisheries to worldwide employment. Fish Fish 14:77–88

    Article  Google Scholar 

  2. FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, Rome

    Google Scholar 

  3. Chalamaiah M, Dinesh Kumar B, Hemalatha R et al (2012) Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem 135:3020–3038

    Article  CAS  PubMed  Google Scholar 

  4. Commission Delegated (20 October 2014) Regulation (EU) No 1392/2014 – establishing a discard plan for certain small pelagic fisheries in the Mediterranean Sea, Brussels

    Google Scholar 

  5. García-Moreno PJ, Pérez-Gálvez R, Espejo-Carpio FJ et al (2017) Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: effect of enzymatic treatment and degree of hydrolysis. J Sci Food Agric 97:299–308

    Article  CAS  PubMed  Google Scholar 

  6. Neves AC, Harnedy PA, O’Keeffe MB et al (2017) Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem 218:396–405

    Article  CAS  PubMed  Google Scholar 

  7. Sukkhown P, Jangchud K, Lorjaroenphon Y et al (2018) Flavored-functional protein hydrolysates from enzymatic hydrolysis of dried squid by-products: effect of drying method. Food Hydrocoll 76:103–112

    Article  CAS  Google Scholar 

  8. Ettelaie R, Zengin A, Lishchuk SV (2017) Novel food grade dispersants: review of recent progress. Curr Opin Colloid Interface Sci 28:46–55

    Article  CAS  Google Scholar 

  9. Lafarga T, Hayes M (2017) Bioactive protein hydrolysates in the functional food ingredient industry: overcoming current challenges. Food Rev Int 33:217–246

    Article  CAS  Google Scholar 

  10. Sidhu KS (2003) Health benefits and potential risks related to consumption of fish or fish oil. Regul Toxicol Pharmacol 38:336–344

    Article  CAS  PubMed  Google Scholar 

  11. Ross A, Vincent A, Savolainen OI et al (2017) Dietary protein sources beyond proteins and amino acids – a comparative study of the small molecular weight components of meat and fish using metabolomics. FASEB J 31:652.613

    Google Scholar 

  12. Pangestuti R, Kim S-K (2017) Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs 15:67

    Article  CAS  PubMed Central  Google Scholar 

  13. Felix M, Romero A, Rustad T et al (2017) Physicochemical, microstructure and bioactive characterization of gels made from crayfish protein. Food Hydrocoll 63:429–436

    Article  CAS  Google Scholar 

  14. Vidotti RM, Viegas EMM, Carneiro DJ (2003) Amino acid composition of processed fish silage using different raw materials. Anim Feed Sci Technol 105:199–204

    Article  CAS  Google Scholar 

  15. Villamil O, Váquiro H, Solanilla JF (2017) Fish viscera protein hydrolysates: production, potential applications and functional and bioactive properties. Food Chem 224:160–171

    Article  CAS  Google Scholar 

  16. Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29

    Article  CAS  Google Scholar 

  17. Venugopal V (2009) Seafood proteins: functional properties and protein supplements. In: Venugopal V (ed) Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. CRC Press, Boca Raton, pp 51–102

    Google Scholar 

  18. Bechtel PJ (1986) Muscle development and contractile proteins. In: Muscle as food. Academic, San Diego, pp 1–35

    Google Scholar 

  19. Lowey S, Risby D (1971) Light chains from fast and slow muscle myosins. Nature 234:81–85

    Article  CAS  PubMed  Google Scholar 

  20. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    Article  CAS  PubMed  Google Scholar 

  21. Lanier T, Yongsawatdigul J, Carvajal-Rondanelli P (2013) Surimi gelation chemistry. In: Park J (ed) Surimi and surimi seafood, 3rd edn. CRC Press, Boca Raton, pp 101–140

    Chapter  Google Scholar 

  22. Kim S-K, Mendis E (2006) Bioactive compounds from marine processing byproducts – a review. Food Res Int 39:383–393

    Article  CAS  Google Scholar 

  23. Pearson AM, Young RB (1989) The connective tissues: collagen, elastin, and ground substance. In: Pearson AM (ed) Muscle and meat biochemistry. Academic, San Diego, pp 338–390

    Chapter  Google Scholar 

  24. Kristinsson HG, Lanier TC, Halldorsdottir SM et al (2013) Fish protein isolate by pH shift. In: Park J (ed) Surimi and surimi seafood, 3rd edn. CRC Press, Boca Raton, pp 169–192

    Chapter  Google Scholar 

  25. Hayes M, Mora L, Hussey K et al (2016) Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innovative Food Sci Emerg Technol 37:253–260

    Article  CAS  Google Scholar 

  26. Park J, Graves D, Draves R et al (2013) Manufacture of surimi. In: Park J (ed) Surimi and surimi seafood, 3rd edn. CRC Press, Boca Raton, pp 55–100

    Chapter  Google Scholar 

  27. Nguyen E, Jones O, Kim YHB et al (2017) Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fish Sci 83:317–331

    Article  CAS  Google Scholar 

  28. Auwal SM, Zarei M, Abdul-Hamid A et al (2017) Optimization of bromelain-aided production of angiotensin I-converting enzyme inhibitory hydrolysates from stone fish using response surface methodology. Mar Drugs 15:104

    Article  CAS  PubMed Central  Google Scholar 

  29. Salampessy J, Reddy N, Phillips M et al (2017) Isolation and characterization of nutraceutically potential ACE-inhibitory peptides from leatherjacket (Meuchenia sp.) protein hydrolysates. LWT Food Sci Technol 80:430–436

    Article  CAS  Google Scholar 

  30. Klomklao S, Benjakul S (2017) Utilization of tuna processing byproducts: protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. J Food Process Preserv 41:e12970

    Article  CAS  Google Scholar 

  31. Venkatesan J, Anil S, Kim S-K et al (2017) Marine fish proteins and peptides for cosmeceuticals: a review. Mar Drugs 15:143

    Article  PubMed Central  Google Scholar 

  32. Cermeño M, FitzGerald RJ, O’Brien NM (2016) In vitro antioxidant and immunomodulatory activity of transglutaminase-treated sodium caseinate hydrolysates. Int Dairy J 63:107–114

    Article  CAS  Google Scholar 

  33. Jeewanthi RKC, Lee N-K, Paik H-D (2015) Improved functional characteristics of whey protein hydrolysates in food industry. Korean J Food Sci Anim Resour 35:350–359

    Article  PubMed  PubMed Central  Google Scholar 

  34. Adler-Nissen J (1976) Enzymatic hydrolysis of proteins for increased solubility. J Agric Food Chem 24:1090–1093

    Article  CAS  PubMed  Google Scholar 

  35. Pacheco-Aguilar R, Mazorra-Manzano MA, Ramírez-Suárez JC (2008) Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chem 109:782–789

    Article  CAS  PubMed  Google Scholar 

  36. Guérard F, Decourcelle N, Sabourin C et al (2010) Recent developments of marine ingredients for food and nutraceutical applications: a review. J Sci Halieut Aquat 2:21–27

    Google Scholar 

  37. Chéret R, Delbarre-Ladrat C, de Lamballerie-Anton M et al (2007) Calpain and cathepsin activities in post mortem fish and meat muscles. Food Chem 101:1474–1479

    Article  CAS  Google Scholar 

  38. Busconi L, Folco EJ, Martone C et al (1984) Identification of two alkaline proteases and a trypsin inhibitor from muscle of white croaker (Micropogon opercularis). FEBS Lett 176:211–214

    Article  CAS  Google Scholar 

  39. Li Q, Zhang L, Lu H et al (2017) Comparison of postmortem changes in ATP-related compounds, protein degradation and endogenous enzyme activity of white muscle and dark muscle from common carp (Cyprinus carpio) stored at 4 °C. LWT Food Sci Technol 78:317–324

    Article  CAS  Google Scholar 

  40. Kleekayai T, Harnedy PA, O’Keeffe MB et al (2015) Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chem 176:441–447

    Article  CAS  PubMed  Google Scholar 

  41. Wenno MR, Suprayitno E, Aulanni’am Aulanni’am H (2016) Identification and molecular interaction, mechanism and angiotensin converting enzyme inhibitory peptide from Bakasang (fermented Skipjack tuna (Katsuwonus pelamis)). Int J PharmTech Res 9:591–598

    CAS  Google Scholar 

  42. Mouritsen OG, Duelund L, Calleja G et al (2017) Flavour of fermented fish, insect, game, and pea sauces: garum revisited. Int J Gastron Food Sci 9:16–28

    Article  Google Scholar 

  43. Kumar S, Nayak BB (2015) Health benefits of fermented fish. In: Prakash Tamang J (ed) Health Benefits of Fermented Foods and Beverages. CRC Press, Boca Raton, FL, 475–488

    Google Scholar 

  44. Skåra T, Axelsson L, Stefánsson G et al (2015) Fermented and ripened fish products in the northern European countries. J Ethnic Foods 2:18–24

    Article  Google Scholar 

  45. Wu H-C, Chen H-M, Shiau C-Y (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber australasicus). Food Res Int 36:949–957

    Article  CAS  Google Scholar 

  46. Wisuthiphaet N, Kongruang S, Chamcheun C (2015) Production of fish protein hydrolysates by acid and enzymatic hydrolysis. J Med Bioeng 4:466–470

    CAS  Google Scholar 

  47. Beddows CG (1997) Fermented fish and fish products. In: Wood BJB (ed) Microbiology of fermented foods. Springer, Boston, pp 416–440

    Google Scholar 

  48. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  49. Udenigwe CC, Aluko RE (2012) Food protein-derived bioactive peptides: production, processing, and potential health benefits. J Food Sci 77:R11–R24

    Article  CAS  PubMed  Google Scholar 

  50. Bouglé D, Bouhallab S (2017) Dietary bioactive peptides: human studies. Crit Rev Food Sci Nutr 57:335–343

    Article  CAS  PubMed  Google Scholar 

  51. Jo C, Khan FF, Khan MI et al (2017) Marine bioactive peptides: types, structures, and physiological functions. Food Rev Int 33:44–61

    Article  CAS  Google Scholar 

  52. Wilkins E, Wilson L, Wickramasinghe K et al (2017) European cardiovascular disease statistics 2017. European Heart Network, Brussels

    Google Scholar 

  53. Zielińska E, Baraniak B, Karaś M (2017) Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 9:970

    Article  PubMed Central  Google Scholar 

  54. Nongonierma AB, Lalmahomed M, Paolella S et al (2017) Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem 231:202–211

    Article  CAS  Google Scholar 

  55. Vieira EF, da Silva DD, Carmo H et al (2017) Protective ability against oxidative stress of brewers’ spent grain protein hydrolysates. Food Chem 228:602–609

    Article  CAS  PubMed  Google Scholar 

  56. Mao X, Bai L, Fan X et al (2017) Anti-proliferation peptides from protein hydrolysates of Pyropia haitanensis. J Appl Phycol 29:1623–1633

    Article  CAS  Google Scholar 

  57. Nongonierma AB, Hennemann M, Paolella S et al (2017) Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food Funct 8:2249–2257

    Article  CAS  PubMed  Google Scholar 

  58. Nongonierma AB, Paolella S, Mudgil P et al (2017) Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. J Funct Foods 34:49–58

    Article  CAS  Google Scholar 

  59. Mojica L, Luna-Vital DA, González de Mejía E (2017) Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J Sci Food Agric 97:2401–2410

    Article  CAS  PubMed  Google Scholar 

  60. Zhou D-Y, Liu Z-Y, Zhao J et al (2017) Antarctic krill (Euphausia superba) protein hydrolysates stimulate cholecystokinin release in STC-1 cells and its signaling mechanism. J Food Process Preserv 41:e12903

    Article  CAS  Google Scholar 

  61. Flaim C, Kob M, Di Pierro AM et al (2017) Effects of a whey proteins supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus or impaired fasting glucose: a pilot study. J Nutr Biochem 50:95–102

    Article  CAS  PubMed  Google Scholar 

  62. Nobile V, Duclos E, Michelotti A et al (2016) Supplementation with a fish protein hydrolysate (Micromesistius poutassou): effects on body weight, body composition, and CCK/GLP-1 secretion. Food Nutr Res 60:29857

    Article  CAS  PubMed  Google Scholar 

  63. Poprac P, Jomova K, Simunkova M et al (2016) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607

    Article  CAS  PubMed  Google Scholar 

  64. Neves AC, Harnedy PA, O’Keeffe MB et al (2017) Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res Int 100:112–120

    Article  CAS  PubMed  Google Scholar 

  65. Li-Chan ECY, Hunag S-L, Jao C-L et al (2012) Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J Agric Food Chem 60:973–978

    Article  CAS  PubMed  Google Scholar 

  66. Gu R-Z, Li C-Y, Liu W-Y et al (2011) Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res Int 44:1536–1540

    Article  CAS  Google Scholar 

  67. Ahn C-B, Cho Y-S, Je J-Y (2015) Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem 168:151–156

    Article  CAS  PubMed  Google Scholar 

  68. Jung W-K, Karawita R, Heo S-J et al (2006) Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochem 41:2097–2100

    Article  CAS  Google Scholar 

  69. Hou H, Fan Y, Li B et al (2012) Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chem 134:821–828

    Article  CAS  PubMed  Google Scholar 

  70. Guo L, Harnedy PA, O’Keeffe MB et al (2015) Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chem 173:536–542

    Article  CAS  PubMed  Google Scholar 

  71. Nikoo M, Benjakul S, Ehsani A et al (2014) Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. J Funct Foods 7:609–620

    Article  CAS  Google Scholar 

  72. Lee S-H, Qian Z-J, Kim S-K (2010) A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 118:96–102

    Article  CAS  Google Scholar 

  73. Je J-Y, Qian Z-J, Byun H-G et al (2007) Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem 42:840–846

    Article  CAS  Google Scholar 

  74. Chi C-F, Wang B, Hu F-Y et al (2015) Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Res Int 73:124–129

    Article  CAS  Google Scholar 

  75. Egerton S, Culloty S, Whooley J et al (2017) Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chem 245:698–706

    Article  CAS  PubMed  Google Scholar 

  76. Rochelle HDL, Courois E, Cudennec B et al (2015) Fish protein hydrolysate having a satietogenic activity, nutraceutical and pharmacological compositions comprising such a hydrolysate and method for obtaining same. Compagnie des Pêches Saint Malo Santé, Museum National D’Histoire Naturelle. US Patent 14/085,350, 22 Jan 2015

    Google Scholar 

  77. Harnedy PA, Parthsarathy V, McLaughlin CM et al (2018) Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivoantidiabetic properties. J Funct Foods 40:137–145

    Article  CAS  Google Scholar 

  78. Song R, Wei R, Zhang B et al (2011) Antioxidant and antiproliferative activities of heated sterilized pepsin hydrolysate derived from half-fin anchovy (Setipinna taty). Mar Drugs 9:1142–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. You L, Zhao M, Liu RH et al (2011) Antioxidant and antiproliferative activities of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. J Agric Food Chem 59:7948–7953

    Article  CAS  PubMed  Google Scholar 

  80. Hsu K-C, Li-Chan ECY, Jao C-L (2011) Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem 126:617–622

    Article  CAS  Google Scholar 

  81. Huang S-L, Jao C-L, Ho K-P et al (2012) Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 35:114–121

    Article  CAS  PubMed  Google Scholar 

  82. Ko J-Y, Kang N, Lee J-H et al (2016) Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochem 51:535–541

    Article  CAS  Google Scholar 

  83. Mahmoodani F, Ghassem M, Babji AS et al (2014) ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate. J Food Sci Technol 51:1847–1856

    Article  CAS  PubMed  Google Scholar 

  84. Kim HJ, Park KH, Shin JH et al (2011) Antioxidant and ACE inhibiting activities of the rockfish Sebastes hubbsi skin gelatin hydrolysates produced by sequential two-step enzymatic hydrolysis. Fish Aquat Sci 14:1–10

    CAS  Google Scholar 

  85. Chalamaiah M, Hemalatha R, Jyothirmayi T et al (2014) Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg (roe) in BALB/c mice. Food Res Int 62:1054–1061

    Article  CAS  Google Scholar 

  86. Yang J-I, Tang J-Y, Liu Y-S et al (2016) Roe protein hydrolysates of Giant Grouper (Epinephelus lanceolatus) inhibit cell proliferation of oral cancer cells involving apoptosis and oxidative stress. Biomed Res Int 2016:12

    Google Scholar 

  87. Jang HL, Liceaga AM, Yoon KY (2017) Isolation and characteristics of anti-inflammatory peptides from enzymatic hydrolysates of sandfish (Arctoscopus japonicus) protein. J Aquat Food Prod Technol 26:234–244

    Article  CAS  Google Scholar 

  88. Senphan T, Benjakul S (2014) Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp. J Funct Foods 6:147–156

    Article  CAS  Google Scholar 

  89. Ngo D-H, Ryu B, Kim S-K (2014) Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chem 143:246–255

    Article  CAS  PubMed  Google Scholar 

  90. Aissaoui N, Chobert J-M, Haertlé T et al (2017) Purification and biochemical characterization of a neutral serine protease from Trichoderma harzianum. Use in antibacterial peptide production from a fish by-product hydrolysate. Appl Biochem Biotechnol 182:831–845

    Article  CAS  PubMed  Google Scholar 

  91. Karnjanapratum S, Benjakul S, O’Callaghan YC et al (2016) Purification and identification of antioxidant peptides from gelatin hydrolysates of unicorn leatherjacket skin. Ital J Food Sci 29:158–170

    Google Scholar 

  92. Vilas Boas LCP, de Lima LMP, Migliolo L et al (2017) Linear antimicrobial peptides with activity against Herpes simplex virus 1 and Aichi virus. Pept Sci 108:e22871

    Article  CAS  Google Scholar 

  93. Rajapakse N, Jung W-K, Mendis E et al (2005) A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci 76:2607–2619

    Article  CAS  PubMed  Google Scholar 

  94. Wang L, Dong C, Li X et al (2017) Anticancer potential of bioactive peptides from animal sources. Oncol Rep 38:637–651

    Article  PubMed  Google Scholar 

  95. Ishak NH, Sarbon NM (2017) A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioprocess Technol. https://doi.org/10.1007/s11947-017-1940-1

  96. Karoud W, Sila A, Krichen F et al (2017) Characterization, surface properties and biological activities of protein hydrolysates obtained from hake (Merluccius merluccius) heads. Waste Biomass Valorization. https://doi.org/10.1007/s12649-017-0069-9

  97. Yesmine BH, Antoine B, da Silva Ortência Leocádia NG et al (2017) Identification of ACE inhibitory cryptides in Tilapia protein hydrolysate by UPLC–MS/MS coupled to database analysis. J Chromatogr B 1052:43–50

    Article  CAS  Google Scholar 

  98. Gauthier SF, Vachon C, Savoie L (1986) Enzymatic conditions of an in vitro method to study protein digestion. J Food Sci 51:960–964

    Article  CAS  Google Scholar 

  99. Fekete S, Veuthey J-L, Guillarme D (2012) New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: theory and applications. J Pharm Biomed Anal 69:9–27

    Article  CAS  PubMed  Google Scholar 

  100. Lemieux L, Piot J-M, Guillochon D et al (1991) Study of the efficiency of a mobile phase used in size-exclusion HPLC for the separation of peptides from a casein hydrolysate according to their hydrodynamic volume. Chromatographia 32:499–504

    Article  CAS  Google Scholar 

  101. Ghassem M, Arihara K, Mohammadi S et al (2017) Identification of two novel antioxidant peptides from edible bird’s nest (Aerodramus fuciphagus) protein hydrolysates. Food Funct 8:2046–2052

    Article  CAS  PubMed  Google Scholar 

  102. WHO (2014) Global status report on noncommunicable diseases 2014. World Health Organization, Geneva

    Google Scholar 

  103. Brieger K, Schiavone S, Miller FJ et al (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659

    CAS  PubMed  Google Scholar 

  104. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    Article  CAS  PubMed  Google Scholar 

  105. Barbour JA, Turner N (2014) Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol 2014:156020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sae-Leaw T, Karnjanapratum S, O’Callaghan YC et al (2017) Purification and identification of antioxidant peptides from gelatin hydrolysate of seabass skin. J Food Biochem 41:e12350

    Article  CAS  Google Scholar 

  107. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  PubMed  Google Scholar 

  108. Hernández-Ledesma B, Dávalos A, Bartolomé B et al (2005) Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem 53:588–593

    Article  CAS  PubMed  Google Scholar 

  109. Murase H, Nagao A, Terao J (1993) Antioxidant and emulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) carnosine. J Agric Food Chem 41:1601–1604

    Article  CAS  Google Scholar 

  110. Park P-J, Jung W-K, Nam K-S et al (2001) Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. J Am Oil Chem Soc 78:651–656

    Article  CAS  Google Scholar 

  111. Husain Z, Schwartz RA (2013) Food allergy update: more than a peanut of a problem. Int J Dermatol 52:286–294

    Article  CAS  PubMed  Google Scholar 

  112. Pawankar R (2014) Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ J 7:12–14

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137

    Article  CAS  PubMed  Google Scholar 

  114. Le Y, Zhou Y, Iribarren P et al (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1:95–104

    CAS  PubMed  Google Scholar 

  115. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607

    Article  CAS  PubMed  Google Scholar 

  116. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  CAS  PubMed  Google Scholar 

  117. Andersen MH, Schrama D, Thor Straten P et al (2006) Cytotoxic T cells. J Invest Dermatol 126:32–41

    Article  CAS  PubMed  Google Scholar 

  118. Portnoy JM, Van Osdol T, Williams PB (2004) Evidence-based strategies for treatment of allergic rhinitis. Curr Allergy Asthma Rep 4:439–446

    Article  PubMed  Google Scholar 

  119. Meltzer EO (2017) Sublingual immunotherapy: a guide for primary care. J Fam Pract 66:S58–S58

    PubMed  Google Scholar 

  120. Reyes-Díaz A, González-Córdova AF, Hernández-Mendoza A et al (2017) Immunomodulation by hydrolysates and peptides derived from milk proteins. Int J Dairy Technol. https://doi.org/10.1111/1471-0307.12421

  121. Tsuruki T, Kishi K, Takahashi M et al (2003) Soymetide, an immunostimulating peptide derived from soybean β-conglycinin, is an fMLP agonist. FEBS Lett 540:206–210

    Article  CAS  PubMed  Google Scholar 

  122. Jaziri Mh, Migliore-Samour D, Casabianca-Pignède M-R et al (1992) Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulating peptides from human milk proteins. Biochim Biophys Acta 1160:251–261

    Article  CAS  Google Scholar 

  123. Takahashi M, Moriguchi S, Ikeno M et al (1996) Studies on the ileum-contracting mechanisms and identification as a complement C3a receptor agonist of oryzatensin, a bioactive peptide derived from rice albumin. Peptides 17:5–12

    Article  CAS  PubMed  Google Scholar 

  124. Cicero AFG, Fogacci F, Colletti A (2017) Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol 174:1378–1394

    Article  CAS  PubMed  Google Scholar 

  125. Chalamaiah M, Yu W, Wu J (2018) Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem 245:205–222

    Article  CAS  PubMed  Google Scholar 

  126. Subhan F, Kang HY, Lim Y et al (2017) Fish scale collagen peptides protect against CoCl2/TNF-α-induced cytotoxicity and inflammation via inhibition of ROS, MAPK, and NF-κB pathways in HaCaT cells. Oxid Med Cell Longev. https://doi.org/10.1155/2017/9703609

  127. Elango R, Laviano A (2017) Protein and amino acids: key players in modulating health and disease. Curr Opin Clin Nutr Metab Care 20:69–70

    Article  PubMed  Google Scholar 

  128. Li G-H, Le G-W, Shi Y-H et al (2004) Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24:469–486

    Article  CAS  Google Scholar 

  129. Natesh R, Schwager SLU, Sturrock ED et al (2003) Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421:551–554

    Article  CAS  PubMed  Google Scholar 

  130. Wu J, Aluko RE, Nakai S (2006) Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure−activity relationship study of di- and tripeptides. J Agric Food Chem 54:732–738

    Article  CAS  Google Scholar 

  131. de Oliveira-Sales EB, Nishi EE, Boim MA et al (2010) Upregulation of AT1R and iNOS in the rostral ventrolateral medulla (RVLM) is essential for the sympathetic hyperactivity and hypertension in the 2K-1C wistar rat model. Am J Hypertens 23:708–715

    Article  CAS  PubMed  Google Scholar 

  132. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389:2239–2251

    Article  CAS  PubMed  Google Scholar 

  133. Eisenbarth GS (2007) Update in type 1 diabetes. J Clin Endocrinol Metab 92:2403–2407

    Article  CAS  PubMed  Google Scholar 

  134. IDF (2015) IDF diabetes atlas. IDF, Brussels

    Google Scholar 

  135. Thomas MC, Paldánius PM, Ayyagari R et al (2016) Systematic literature review of DPP-4 inhibitors in patients with type 2 diabetes mellitus and renal impairment. Diabetes Ther 7:439–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mahmood N (2016) A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp Clin Pathol 25:1253–1264

    Article  CAS  Google Scholar 

  137. Zhang L, Chen Q, Li L et al (2016) Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: a systematic review and meta-analysis. Sci Rep 6:32649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lacroix IME, Li-Chan ECY (2016) Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – current knowledge and future research considerations. Trends Food Sci Technol 54:1–16

    Article  CAS  Google Scholar 

  139. Stoimenis D, Karagiannis T, Katsoula A et al (2017) Once-weekly dipeptidyl peptidase-4 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Expert Opin Pharmacother 18:843–851

    Article  CAS  PubMed  Google Scholar 

  140. Lovshin JA (2017) Glucagon-like peptide-1 receptor agonists: a class update for treating type 2 diabetes. Can J Diabetes 41:524–535

    Article  PubMed  Google Scholar 

  141. Gourgari E, Aroda VR, Wilhelm EE et al (2017) A comprehensive review of the FDA-approved labels of diabetes drugs: indications, safety, and emerging cardiovascular safety data. J Diabetes Complications 31:1719–1727

    Article  PubMed  Google Scholar 

  142. Nishi T, Hara H, Tomita F (2003) Soybean β-conglycinin peptone suppresses food intake and gastric emptying by increasing plasma cholecystokinin levels in rats. J Nutr 133:352–357

    Article  CAS  PubMed  Google Scholar 

  143. Sharara AI, Bouras EP, Misukonis MA et al (1993) Evidence for indirect dietary regulation of cholecystokinin release in rats. Am J Physiol Gastrointest Liver Physiol 265:G107–G112

    Article  CAS  Google Scholar 

  144. Cudennec B, Ravallec-Plé R, Courois E et al (2008) Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chem 111:970–975

    Article  CAS  Google Scholar 

  145. Cudennec B, Fouchereau-Peron M, Ferry F et al (2012) In vitro and in vivo evidence for a satiating effect of fish protein hydrolysate obtained from blue whiting (Micromesistius poutassou) muscle. J Funct Foods 4:271–277

    Article  CAS  Google Scholar 

  146. Greco E, Winquist A, Lee T et al (2017) The role of source of protein in regulation of food intake, satiety, body weight and body composition. J Nutr Health Food Eng 6:00223

    Google Scholar 

  147. Madani Z, Sener A, Malaisse WJ et al (2015) Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet. Mol Med Rep 12:7017–7026

    CAS  PubMed  Google Scholar 

  148. Umezawa H, Aoyagi T, Ogawa K et al (1984) Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J Antibiot 37:422–425

    Article  CAS  PubMed  Google Scholar 

  149. Chinembiri T, du Plessis L, Gerber M et al (2014) Review of natural compounds for potential skin cancer treatment. Molecules 19:11679

    Article  CAS  PubMed  Google Scholar 

  150. Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35:631–640

    Article  CAS  PubMed  Google Scholar 

  151. Roomi MW, Shanker N, Niedzwiecki A et al (2015) Induction of apoptosis in the human prostate cancer cell line DU-145 by a novel micronutrient formulation. Open J Apoptosis 4:11

    Article  CAS  Google Scholar 

  152. Ding G-F, Huang F-F, Yang Z-S et al (2011) Anticancer activity of an oligopeptide isolated from hydrolysates of Sepia ink. Chin J Nat Med 9:151–155

    CAS  Google Scholar 

  153. Alemán A, Pérez-Santín E, Bordenave-Juchereau S et al (2011) Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int 44:1044–1051

    Article  CAS  Google Scholar 

  154. Harnedy PA, Fitzgerald RJ (2013) Bioactive proteins and peptides from macroalgae, fish, shellfish and marine processing waste. In: Kim S-K (ed) Marine proteins and peptides. Wiley, Chichester, pp 5–39

    Chapter  Google Scholar 

  155. Minekus M, Alminger M, Alvito P et al (2014) A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct 5:1113–1124

    Article  CAS  PubMed  Google Scholar 

  156. Liu Y, Pischetsrieder M (2017) Identification and relative quantification of bioactive peptides sequentially released during simulated gastrointestinal digestion of commercial kefir. J Agric Food Chem 65:1865–1873

    Article  CAS  PubMed  Google Scholar 

  157. Vilcacundo R, Martínez-Villaluenga C, Hernández-Ledesma B (2017) Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J Funct Foods 35:531–539

    Article  CAS  Google Scholar 

  158. Phongthai S, D’Amico S, Schoenlechner R et al (2018) Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem 240:156–164

    Article  CAS  PubMed  Google Scholar 

  159. Nieva-Echevarria B, Jacobsen C, García Moreno PJ et al (2016) Evaluation of the antioxidant activity in food model system of fish peptides released during simulated gastrointestinal digestion. Paper presented at the 14th Euro Fed Lipid Congress, Ghent, 18–21 Sept 2016

    Google Scholar 

  160. Sanchón J, Fernández-Tomé S, Miralles B et al (2018) Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem 239:486–494

    Article  CAS  Google Scholar 

  161. Toopcham T, Mes JJ, Wichers HJ et al (2017) Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins. Food Chem 220:190–197

    Article  CAS  PubMed  Google Scholar 

  162. Grimble GK, Keohane PP, Higgins BE et al (1986) Effect of peptide chain length on amino acid and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum. Clin Sci 71:65–69

    Article  CAS  PubMed  Google Scholar 

  163. Keohane PP, Grimble GK, Brown B et al (1985) Influence of protein composition and hydrolysis method on intestinal absorption of protein in man. Gut 26:907–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hou H, Fan Y, Wang S et al (2016) Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor – artificial neural network and the identification of its active central fragment. J Funct Foods 24:37–47

    Article  CAS  Google Scholar 

  165. FitzGerald RJ, Meisel H (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr 84:33–37

    Article  Google Scholar 

  166. Ramezanzade L, Hosseini SF, Nikkhah M (2017) Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem 234:220–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Aurélien V. Le Gouic and Pádraigín A. Harnedy were funded by the Department of Agriculture, Food and the Marine, Ireland, under grant issue 14/F/873 and 13/F/467, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. FitzGerald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Le Gouic, A.V., Harnedy, P.A., FitzGerald, R.J. (2018). Bioactive Peptides From Fish Protein By-Products. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics