Advertisement

Jaboticaba: Chemistry and Bioactivity

  • Natália Crialeison Balbo Vall Ribeiro
  • Andressa Mara Baseggio
  • Vicki Schlegel
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

The jaboticaba is a fruit native to Brazil that grows in the wild throughout the country but is also cultivated on a low-scale basis by small farmers. Research is currently being reported that jaboticaba is a rich source of bioactive compounds, particularly the phenolic compounds. For example, high levels of the anthocyanins, cyanidin-3-O-glucoside and delphinidin-3-O-glucoside, and ellagitannins/ellagic acid are the predominant phenols present in jaboticaba and reside primarily in the peel and seeds of the fruit. These substances have been linked to multiple health benefits, including the prevention and/or mitigation of oxidation, inflammation, atherosclerosis risk factors, cancer, and conditions involved with metabolic syndrome. The fruit, or substances therein, has also been shown to enhance the immune system and gut microbiome. Therefore, the objective of this manuscript is to review the health-promoting properties exerted by jaboticaba or the compounds that reside in the fruit demonstrated throughout the literature, with an emphasis on the phenols.

Keywords

Jaboticaba Bioactive agents Phenols Flavonoids Anthocyanins Ellagic acid Gallic acid Health benefits Dietary bioactivity Ellagitannins 

List of Abbreviations

ATP

Adenine triphosphate (ATP)

CD40

Cluster of differentiation 40 protein

CD83

Cluster of differentiation 83 protein

CD86

Cluster of differentiation 86 protein

DNA

Deoxyribonucleic acid

GI

Gastrointestinal

H2O2

Hydrogen peroxide

hBD-

Human beta defensin 2

HDL

High-density lipoprotein

HDL-C

High-density lipoprotein cholesterol

HIV

Human immunodeficiency virus

iNOS

Inducible nitric oxide synthase

LDL

Low-density lipoprotein

LDL-C

Low-density lipoprotein cholesterol

LOX-1

Lectin-like oxidized low-density lipoprotein receptor

MetS

Metabolic syndrome

MMP

Matrix metalloproteinase

NO

Nitric oxide

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

SLP1

Secretory leukocyte protease inhibitor

TC

Total cholesterol

w/w

Weight/weight

References

  1. 1.
    Santos DT, Veggi PC, Meirele AA (2010) Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: yield, composition and economical evaluation. J Food Eng 10:23–31CrossRefGoogle Scholar
  2. 2.
    Neves LC, da Silva VX, Benedette RM, Prill MADS, Vieites RL, Roberto SR (2008) Conservação de uvas “Crimson Seedless” e “Itália”, submetidas a diferentes tipos de embalagens e dióxido de enxofre (SO2). Rev Bras Frutic 30:65–73CrossRefGoogle Scholar
  3. 3.
    Abe LT, Lajolo FM, Genovese MI (2012) Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: jaboticaba (Myrciaria jaboticaba (Vell.) Berg). J Sci Food Agric 92:1679–1687CrossRefGoogle Scholar
  4. 4.
    Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675–683CrossRefGoogle Scholar
  5. 5.
    He J, Giusti MM (2010) Anthocyanins: natural colorants with health promoting properties. Annu Rev Food Sci Technol 1:163–187CrossRefGoogle Scholar
  6. 6.
    Hagiwara A, Miyashita K, Nakanishi T, Sano M, Tamano S, Kadota T, Koda T, Nakamura M, Imaida K, Ito N (2001) Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1, 2-dimethylhydrazine. Cancer Lett 171:17–25CrossRefGoogle Scholar
  7. 7.
    Sriamornsak P (2011) Application of pectin in oral drug delivery. Exp Opin Drug Del 8:1009–1023CrossRefGoogle Scholar
  8. 8.
    Francis FJ, Markakis PC (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28:273–314CrossRefGoogle Scholar
  9. 9.
    Inada KOP, Oliveira AA, Revorêdo TB, Martins ABN, Lacerda ECQ, Freire AS, Braz BF, Santelli RE, Torres AG, Perrone D, Monteiro MC (2015) Screening of the chemical composition and occurring antioxidants in jaboticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions. J Funct Foods 17:422–433CrossRefGoogle Scholar
  10. 10.
    Obtained from https://en.wikipedia.org/wiki/Jabuticaba. Accessed on 31 Dec 201
  11. 11.
    Wu S-B, Long C, Kennelly EJ (2013) Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Res Int 54:148–159CrossRefGoogle Scholar
  12. 12.
    Lenquiste SA, Marineli RDS, Moraes ÉA, Dionísio AP, Brito ESD, Maróstica MR Jr (2015) Jaboticaba peel and jaboticaba peel aqueous extract shows in vitro and in vivo antioxidant properties in obesity model. Food Res Int 77:162–170CrossRefGoogle Scholar
  13. 13.
    Alezandro MR, Dubé P, Desjardins Y, Lajolo FM, Genovese MI (2013) Comparative study of chemical and phenolic compositions of two species of jaboticaba (Myrciaria jaboticaba (Vell) Berg and Myrciaria cauliflora (Mart) O. Berg). Food Res Int 54:468–477CrossRefGoogle Scholar
  14. 14.
    da Silva JK, Batista ÂG, Cazarin CBB, Dionísio AP, de Brito ES, Marques ATB, Maróstica MR Jr (2017) Functional tea from a Brazilian berry: overview of the bioactives compounds. LWT Food Sci Technol 76:292–298CrossRefGoogle Scholar
  15. 15.
    Lima ADJB, Corrêa AD, Dantas-Barros AM, Nelson DL, Amorim ACL (2011) Sugars, organic acids, minerals and lipids in jaboticaba. Rev Bras Frutic 33:540–550CrossRefGoogle Scholar
  16. 16.
    Rufino MDSM, Alves RE, de Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002CrossRefGoogle Scholar
  17. 17.
    Gurak PD, De Bona GS, Tessaro IC, Marczak LDF (2014) Jaboticaba pomace powder obtained as a co-product of juice extraction: a comparative study of powder obtained from peel and whole fruit. Food Res Int 62:786–792CrossRefGoogle Scholar
  18. 18.
    Leite-Legatti AV, Batista ÂG, Dragano NRV, Marques AC, Malta LG, Riccio MF, Eberlin MN, Machado ART, de Carvalho-Silva LB, Ruiz ALTG, de Carvalho JE, Pastore GM, Maróstica MR (2012) Jaboticaba peel: antioxidant compounds, antiproliferative and antimutagenic activities. Food Res Int 49:596–603CrossRefGoogle Scholar
  19. 19.
    Batista ÂG, Lenquiste SA, Cazarin CBB, da Silva JK, Luiz-Ferreira A, Bogusz SB Jr, Souza RN, Augusto F, Prado MA, Maróstica MR Jr (2014) Intake of jaboticaba peel attenuates oxidative stress in tissues and reduces circulating saturated lipids of rats with high fat diet induced obesity. J Funct Foods 6:450–461CrossRefGoogle Scholar
  20. 20.
    Batista ÂG, Soares ES, Mendonça MCP, da Silva JK, Dionísio AP, Sartori CR, da Cruz-Höfling MA, Maróstica MR Jr (2017) Jaboticaba berry peel intake prevents insulin-resistance-induced tau phosphorylation in mice. Mol Nutr Food 61(10):1600952CrossRefGoogle Scholar
  21. 21.
    Plaza M, Batista ÂG, Cazarin CBB, Sandahl M, Turner C, Östman E, Maróstica MR Jr (2016) Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: a pilot clinical study. Food Chem 211:185–197CrossRefGoogle Scholar
  22. 22.
    Miguel MG (2010) Antioxidant activity of medicinal and aromatic plants. A review. Flavour Frag J 25:291–312CrossRefGoogle Scholar
  23. 23.
    Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352CrossRefGoogle Scholar
  24. 24.
    Toyokuni S, Tanaka T, Kawaguchi W, Fang N, Ozeki RL, Akatsuka M, Hiai S, Okezie H, Aruoma OI, Bahorun T (2003) Effects of the phenolic contents of Mauritian endemic plant extracts on promoter activities of antioxidant enzymes. Free Radic Res 37:1215–1224CrossRefGoogle Scholar
  25. 25.
    Naga OA, Seki M, Kobayashi H (1999) Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 63:1787–1790CrossRefGoogle Scholar
  26. 26.
    Yeh C-T, Yen G-C (2006) Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance – associated protein 3 mRNA expression. J Nutr 136:11–15CrossRefGoogle Scholar
  27. 27.
    Masella R, Di Benedetto R, Vari R, Filesi C, Giovanin C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586CrossRefGoogle Scholar
  28. 28.
    Haminiuk CWI, Plata-Oviedo MSV, Guedes AR, Stafussa AP, Bona E, Carpes ST (2011) Chemical, antioxidant and antibacterial study of Brazilian fruits. Food Sci Technol 46:1529–1537Google Scholar
  29. 29.
    Leite AV, Malta LG, Riccio MF, Eberlin MN, Pastore GM, Maróstica MR Jr (2011) Antioxidant potential of rat plasma by administration of freeze-dried jaboticaba peel (Myrciaria jaboticaba Vell Berg). J Agric Food Chem 59:2277–2283CrossRefGoogle Scholar
  30. 30.
    Calloni C, Agnol RD, Martínez LS, Maron FS, Moura S, Salvador M (2015) Jaboticaba (Plinia trunciflora (O. Berg) Kausel) fruit reduces oxidative stress in human fibroblast cells (MRC-5). Food Res Int 70:15–22CrossRefGoogle Scholar
  31. 31.
    Martins de Sá LZC, Castro PFS, Lino FMA, Bernardes MJC, Viegas JCJ, Dinis TCP, Santana MJ, Romao W, Vaz BGV, Lião LM, Ghedini PC, Rocha ML, Gil ES (2014) Antioxidant potential and vasodilatory activity of fermented beverages of jaboticaba berry (Myrciaria jaboticaba). J Funct Foods 8:169–179CrossRefGoogle Scholar
  32. 32.
    Garcia-Diaz DF, Jimenez P (2013) Bioactive compounds and health benefits of exotic tropical red- black berries. J Funct Foods 5:539–549CrossRefGoogle Scholar
  33. 33.
    Wang W-H, Tyan Y-C, Chen Z-S, Lin C-G, Yang M-H, Yuan S-S, Tsai W-C (2014) Evaluation of the antioxidant activity and antiproliferative effect of the jaboticaba (Myrciaria cauliflora) seed extracts in oral carcinoma cells. Biomed Res Int.  https://doi.org/10.1155/2014/185946
  34. 34.
    Silva MC, de Sousa VB, Thomazini M, da Silva ER, Smaniotto T, de Carvalho RA, Genovese MI, Favaro-Trindade CS (2014) Use of the jaboticaba (Myrciaria cauliflora) depulping residue to produce a natural pigment powder with functional properties. LWT-Food Sci Technol 55:203–209CrossRefGoogle Scholar
  35. 35.
    Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Therap 96:267–202CrossRefGoogle Scholar
  36. 36.
    Tsuda T (2012) Dietary anthocyanin rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 56:159–170CrossRefGoogle Scholar
  37. 37.
    Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633CrossRefGoogle Scholar
  38. 38.
    Tsuda T, Horio F, Osawa T (2000) The role of anthocyanins as an antioxidant under oxidative stress in rats. Biofactors 13:133–139CrossRefGoogle Scholar
  39. 39.
    Ramirez-Tortosa C, Andersen ØM, Gardner PT, Morrice PC, Wood SG, Duthie SJ, Collins AR, Duthie GG (2001) Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med 31:1033–1037CrossRefGoogle Scholar
  40. 40.
    Priyadarsini KI, Khopde SM, Dumar SS, Mohan H (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50:2200–2206CrossRefGoogle Scholar
  41. 41.
    Han DH, Lee MJ, Kim JH (2006) Antioxidant and apoptosis-induct activity of ellagic acid. Anticancer Res 26:3601–3606Google Scholar
  42. 42.
    Aglitti FF, Duranti G, Rcordy R, Perticone P, Cozzi R (2001) Strong antioxidant activity of ellagic acid in mammalian cells in vitro revealed by the comet assay. Anticancer Res 21:3903–3908Google Scholar
  43. 43.
    Meyer AS, Heinonen M, Frankel EN (1998) Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem 61:71–75CrossRefGoogle Scholar
  44. 44.
    Turk G, Atessahin A, Sonmez M, Ceribasi AO, Yuce A (2008) Improvements of cisplatin-induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril 89:1474–1481CrossRefGoogle Scholar
  45. 45.
    O’Byrne KJ, Dalgleish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85:473–483CrossRefGoogle Scholar
  46. 46.
    Lumeng CN, Bodzin JL, Saltiel A (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184CrossRefGoogle Scholar
  47. 47.
    Wellen KE (2005) Inflammation, stress and diabetes. J Clin Invest 115:1111–1119CrossRefGoogle Scholar
  48. 48.
    Lionett L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A (2009) From chronic overnutrition to insulin resistance the role of fat storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19:146–152CrossRefGoogle Scholar
  49. 49.
    Chan BCL, Li LF, Hu SQ, Wat E, Wong ECW, Zhang VX, Lau CBS, Wong CK, Hon KLE, Hui PCL (2015) Gallic acid is the major active component of Cortex Moutan in inhibiting immune maturation of human monocyte-derived dendritic cells. Mol Ther 20:16388–16403Google Scholar
  50. 50.
    Dale BA (2002) Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000(30):70–78CrossRefGoogle Scholar
  51. 51.
    Narayanan BA, Geoffroy O, Willingham MC, Re GG, Nixon DW (1999) p53/p21 (WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett 136:215–221CrossRefGoogle Scholar
  52. 52.
    Fakhry C, Marks MA, Gilman RH, Cabrerra L, Yori P, Kosek M, Gravitt PE (2013) Comparison of the immune microenvironment of the oral cavity and cervix in healthy women. Cytokine 64:597–604CrossRefGoogle Scholar
  53. 53.
    Schröder J-M, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31:645–651CrossRefGoogle Scholar
  54. 54.
    QuiÃones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P (2003) Human epithelial Î2-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17:F39–F48CrossRefGoogle Scholar
  55. 55.
    Promsong A, Chung WO, Satthakarn S, Nittayananta W (2014) Ellagic acid modulates the expression of oral innate immune mediators: potential role in mucosal protection. J Oral Pathol Med 44:214–221CrossRefGoogle Scholar
  56. 56.
    Modi MN, Goel T, Das T, Malik S, Suri S, Rawas AKS, Srivastava SK, Tuli R, Malhotra S, Gupta SK (2013) Ellagic acid and gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through the inhibition of HIV-1 protease and reverse transcriptase activity. Indian J Med Res 137:540–548Google Scholar
  57. 57.
    Jenning A, Welch AA, Spector T, Macgregar A, Cassidy A (2014) Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 144:202–208CrossRefGoogle Scholar
  58. 58.
    Hassellund SS, Flaa A, Kjeldsen SE, Seljeflot I, Karlsen A, Erlund I, Rstrup M (2013) Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebo controlled crossover study. J Hum Hypertens 27:100–106CrossRefGoogle Scholar
  59. 59.
    Mena P, Dominguez-Perles R, Girones-Vilaplan A, Baenas N, Garcia-Viguera C, Villano D (2014) Flavan-3-ols, anthocyanins, and inflammation. Lifestyles 66:745–758Google Scholar
  60. 60.
    Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism functions and health. Food Res Int 44:1150–1160CrossRefGoogle Scholar
  61. 61.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cnacer J Clin 66:7–30CrossRefGoogle Scholar
  62. 62.
    Adams J, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337CrossRefGoogle Scholar
  63. 63.
    Zee Y-K, O’connor JP, Parker GJ, Jackson A, Clamp AR, Taylor MB, Clarke NW, Jayson GC (2010) Imaging angiogenesis of genitourinary tumors. Nat Rev Urol 7:69–82CrossRefGoogle Scholar
  64. 64.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899CrossRefGoogle Scholar
  65. 65.
    Palmer S (1985) Diet, nutrition and cancer. Prog Food Nutr Sci 9:283–341Google Scholar
  66. 66.
    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hipert DF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88CrossRefGoogle Scholar
  67. 67.
    Losso JN, Bansode RR, Trappey A II, Bawadi HA, Truax R (2004) In vitro anti-proliferative activities of ellagic acid. J Nutr Biochem 15:672–678CrossRefGoogle Scholar
  68. 68.
    Edderkaoui M, Odinokova I, Ohno I, Gukovshky I, Go VLW, Pandol SJ, Gukovskaya AS (2008) Ellagic acid induces apoptosis through inhibition of nuclear factor kB in pancreatic cancer cell lines. World J Gastroenterol 14:3672–3680CrossRefGoogle Scholar
  69. 69.
    Stoner GD, Mukhtar H (1995) Polyphenols as cancer chemopreventive agents. J Cell Biochem 59:169–180CrossRefGoogle Scholar
  70. 70.
    Maas JL, Galletta GJ, Stoner GD (1991) Ellagic acid, an anticarcinogen in fruits, especially strawberries: a review. HortSci 26:1–14Google Scholar
  71. 71.
    Ismail T, Calcabrini C, Diaz RA, Fimognari C, Turrini E, Catanzaro E, Akhtar S, Sestili P (2016) Ellagitannins in cancer chemoprevention and therapy. Toxins 8:1–22.  https://doi.org/10.3390/toxins8050151CrossRefGoogle Scholar
  72. 72.
    Kasimsetty SG, Bialonska D, Reddy MK, Ma G, Khan SI, Ferreira D (2010) Colon cancer chemopreventive activities of pomegranate ellagitannins and urolithins. J Agric Food Chem 58:2180–2187CrossRefGoogle Scholar
  73. 73.
    Heber D (2008) Multitargeted therapy of cancer by ellagitannins. Cancer Lett 269:262–268CrossRefGoogle Scholar
  74. 74.
    Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, Heber D (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16:360–367CrossRefGoogle Scholar
  75. 75.
    Lu Y, Jiang F, Jiang H, Wu K, Zheng W, Yizhong C, Katakowski M, Chopp M, To S-ST (2010) Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur J Pharmacol 641:102–117CrossRefGoogle Scholar
  76. 76.
    Kaur M, Velmurugan B, Rajamankckam S, Agarwal R, Agarwal C (2009) Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude cell. Pharm Res 25:213–2140Google Scholar
  77. 77.
    Verma S, Sing A, Mishra A (2013) Gallic acid: molecular rival of cancer. Enviorn Toxicol Pharmacol 35:473–485CrossRefGoogle Scholar
  78. 78.
    Ho H-H, Chang C-S, Ho W-C, Liao S-Y, Wu C-H, Wang C-J (2010) Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food ChemToxicol 48:2508–2516CrossRefGoogle Scholar
  79. 79.
    Toth M, Sohail A, Fridman R (2012) Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methos Mol Biol 878:121–135CrossRefGoogle Scholar
  80. 80.
    Locatelli C, Filippin-Monteiro FB, Creczynski-Pasa TB (2013) Alkyl ester of gallic acid as anticancer agents: a review. Eur J Med Chem 60:233–239CrossRefGoogle Scholar
  81. 81.
    Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933CrossRefGoogle Scholar
  82. 82.
    Zhang Y, Vareed SK, Nair MG (2005) Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci 76:1465–1472CrossRefGoogle Scholar
  83. 83.
    Feng R, Ni H-M, Wang SY, Tourkova IL, Shurin MR, Harada H, Yin X-M (2007) Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem 282:13468–13476CrossRefGoogle Scholar
  84. 84.
    Brandstetter H, Grams F, Glitz D, Lang A, Huber R, Bode W, Krell H-W, Engh RA (2001) The 1.8-Å crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. J Biol Chem 276:17405–17412CrossRefGoogle Scholar
  85. 85.
    Nagase H, Sasaki K, Kito H, Haga A, Sato T (1998) Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro. Planta Med 64:216–219CrossRefGoogle Scholar
  86. 86.
    Bagchi D, Sen C, Bagchi M, Atalay M (2004) Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemist 69:75–80Google Scholar
  87. 87.
    Wang L-S, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290CrossRefGoogle Scholar
  88. 88.
    Libby P, Sukhova G, Lee RT, Liao JK (1997) Molecular biology of atherosclerosis. Int J Cardiol 62:S23–S29CrossRefGoogle Scholar
  89. 89.
    Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045–2051CrossRefGoogle Scholar
  90. 90.
    Wang S, Wu D, Matthan NR, Lamon-Fava S, Lecker JL, Lichtenstein AH (2009) Reduction in dietary omega-6 polyunsaturated fatty acids: eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 204:147–155CrossRefGoogle Scholar
  91. 91.
    Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL (1996) The Yin and Yang of oxidation in the development of the fatty streak. Arterioscler Thromb Vasc Biol 16:831–842CrossRefGoogle Scholar
  92. 92.
    Aviram M (1993) Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 98:1–9CrossRefGoogle Scholar
  93. 93.
    Wang HX, Ng TB (1999) Natural products with hyperglycemic hypertensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sci 65(25):2663–2677CrossRefGoogle Scholar
  94. 94.
    Batista ÂG, Lenquiste SA, Moldenhauer C, Gody JT, Pissini MR, Maróstica MR Jr (2013) Jaboticaba (Myrciaria jaboticaba (Vell.) Berg) peel improved triglyceride excretion and hepatic lipid peroxidation in high fat fed rats. Rev Nutr 5:571–581CrossRefGoogle Scholar
  95. 95.
    Alezandro MR, Granato D, Genovese MI (2013) Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Res Int 54:650–659CrossRefGoogle Scholar
  96. 96.
    German JB, Dillard CJ (2004) Saturated fats: what dietary intake?1,2,3. Am J Clin Nutr 80:550–559CrossRefGoogle Scholar
  97. 97.
    Chang W-C, Yu Y-M, Chiang S-Y, Tseng C-Y (2008) Ellagic acid suppresses oxidised low-density lipoprotein-induced aortic smooth muscle cell proliferation: studies on the activation of extracellular signal-regulated kinase 1/2 and proliferating cell nuclear antigen expression. Br J Nutr 99:709–714CrossRefGoogle Scholar
  98. 98.
    Papoutsi Z, Kassi E, Chinou I, Halabalaki M, Skaltsounis L, Moutsatsou P (2008) Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr 99:715–722CrossRefGoogle Scholar
  99. 99.
    Yu Y-M, Wang Z-H, Liu C-H, Chen C-S (2007) Ellagic acid inhibits IL-1β-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 97:692–698CrossRefGoogle Scholar
  100. 100.
    Chen XP, Zhang TT, Du GH (2007) Lectin-like oxidized low-density lipoprotein receptor-1, a new promising target for the therapy of atherosclerosis. Cardiovas Drug Rev 25:146–161CrossRefGoogle Scholar
  101. 101.
    Lee W-J, Ou H-C, Hsu W-C, Chou M-M, Tseng J-J, Hsu S-L, Tsai K-L, Sheu WH-H (2010) Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation and inflammation in human endothelial cells. J Vasc Surg 52:1290–1300CrossRefGoogle Scholar
  102. 102.
    Zou M-H, Leist M, Ullrich V (1999) Selective nitration of prostacyclin synthase and defective vasorelaxation in atherosclerotic bovine coronary arteries. Am J Pathol 154:1359–1365CrossRefGoogle Scholar
  103. 103.
    Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA (2010) Ellagitannins, ellagic acid and vascular health. Mol Asp Med 31:513–539CrossRefGoogle Scholar
  104. 104.
    Xia X, Ling W, Ma J, Xia M, Hou M, Wang Q, Zhu H, Tang Z (2006) An anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in apolipoprotein E–deficient mice. J Nutr 136:2220–2225CrossRefGoogle Scholar
  105. 105.
    de Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703CrossRefGoogle Scholar
  106. 106.
    Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Cardiovasc Dis 2:1–7Google Scholar
  107. 107.
    Morton LW, Caccetta RAA, Puddy IB, Croft KD (2000) Chemistry and biological effect of dietary phenolic compounds: relevance to cardiovascular disease. Clin Exp Pharmacol Physiol 27:152–159CrossRefGoogle Scholar
  108. 108.
    Kritchevsky D, Story JA (1978) Fiber hypercholesteremia and atherosclerosis. Lipids 13:366–369CrossRefGoogle Scholar
  109. 109.
    Glore SR, Treeck DV, Knehans AW, Guild M (1994) Soluble fiber and serum lipids: a literature review. J Am Diet Assoc 94:425–436CrossRefGoogle Scholar
  110. 110.
    Leveille GA, Sauberlich HE (1966) Mechanism of the cholesterol depressing effect of pectin in the cholesterol fed rat. J Nutr 88:209–214CrossRefGoogle Scholar
  111. 111.
    Diamant M, Black EE, de Vos WM (2011) Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12:272–281CrossRefGoogle Scholar
  112. 112.
    Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69:1052S–1057SCrossRefGoogle Scholar
  113. 113.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity- associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefGoogle Scholar
  114. 114.
    Roberfroid MB (2001) Prebiotics: preferential substrates for specific germs? Am J Clin Nutr 73:406S–409SCrossRefGoogle Scholar
  115. 115.
    Gonzalez-Barrio R, Pilar Truchado P, Hideyuki I, Espín JC, Tomas-Barberan FA (2011) UV and MS identification of urolithins and nasutins, the bioavailable metabolites of ellagitannins and ellagic acid in different mammals. J Agric Food Chem 59:1152–1162CrossRefGoogle Scholar
  116. 116.
    Faria A, Fernandes I, Norberto S, Mateus N, Calhau C (2014) Interplay between anthocyanins and gut microbiota. J Agric Food Chem 62:6969–6902CrossRefGoogle Scholar
  117. 117.
    Okuda T, Yoshida T, Hatano T (1989) New methods of analyzing tannins. J Nat Prod 52:1–31CrossRefGoogle Scholar
  118. 118.
    Mertens-Talcott SU, Jilma-Stohlawetz P, Rios J, Hingorani L, Derendorf H (2006) Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J Agric Food Chem 54:8956–8961CrossRefGoogle Scholar
  119. 119.
    Selma MV, Romo-Vaquero M, García-Villalba R, González-Sarrías A, Tomás-Barberán FA, Espín JC (2016) The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food Funct 7:1769–1774CrossRefGoogle Scholar
  120. 120.
    Selma MV, Tomás-Barberán FA, Beltran D, García-Villalba R, Espín JC (2014) Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int J Syst Evol Microbiol 64:2346–2352CrossRefGoogle Scholar
  121. 121.
    Li Z, Henning SM, Lee RP, Lu Q-Y, Summanen PH, Thames G, Corbett K, Downes J, Tseng C-H, Finegold SM (2015) Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct 6:2487–2495CrossRefGoogle Scholar
  122. 122.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefGoogle Scholar
  123. 123.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefGoogle Scholar
  124. 124.
    Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 104:S48–S66CrossRefGoogle Scholar
  125. 125.
    Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JP, de Pascual-Teresa S (2012) Metabolism of anthocyanins by human gut microflora and their influence. J Agric Food Chem 60:3882–3890CrossRefGoogle Scholar
  126. 126.
    Gibson GR (1998) Dietary modulation of the human gut microflora using prebiotics. Br J Nutr 80:S209–S212Google Scholar
  127. 127.
    Jiang T, Gao X, Wu C, Tian F, Lei Q, Bi J, Xie B, Wang HY, Chen S, Wang X (2016) Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet induced obesity. Nutrients 8:126.  https://doi.org/10.3390/nu8030126CrossRefGoogle Scholar
  128. 128.
    Parkar SG, Redgat EL, Wibisono R, Luo X, Koh ETH, Roswitha Schroder R (2010) Gut health benefits of kiwifruit pectins: comparison with commercial functional polysaccharides. J Funct Foods 2:210–218CrossRefGoogle Scholar
  129. 129.
    Nazzaro F, Fratianni F, Nicolaus B, Poli A, Orlando P (2010) The prebiotic source influences the growth, biochemical features and survival under simulate gastrointestinal conditions of the prebiotic Lactobacillus acidophilus. Anaerobe 18:280–285CrossRefGoogle Scholar
  130. 130.
    Hopps E, Noto D, Caimi G, Averna MR (2010) A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 20:72–77CrossRefGoogle Scholar
  131. 131.
    Eckel RH, Grandy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428CrossRefGoogle Scholar
  132. 132.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordan RMK, Savage PJ, Smith SC, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome. Circulation 12:2735–2752CrossRefGoogle Scholar
  133. 133.
    World Health Organization (2000) Obesity: preventing and managing the global epidemic. Defining the problem, who library cataloging in publication data. Technical report series, vol 894. WHO, Geneva, pp 1–13Google Scholar
  134. 134.
    Vincent HK, Innes KE, Vincent KR (2007) Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab 9:813–839CrossRefGoogle Scholar
  135. 135.
    Dragano NR, Cintra DE, Solon C, Morari J, Leite-Legatti AV, Velloso LA, Maróstica-Jr MR (2013) Freeze-dried jaboticaba peel powder improves insulin sensitivity in high-fat- fed mice. Br J Nutr 110:447–455CrossRefGoogle Scholar
  136. 136.
    Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefGoogle Scholar
  137. 137.
    Lenquiste SA, Batista ÂG, da Silva MR, Dragano NRV, Maróstica MR (2012) Freeze-dried jaboticaba peel added to high-fat diet increases HDL-cholesterol and improves insulin resistance in obese rats. Food Res Int 49:153–160CrossRefGoogle Scholar
  138. 138.
    Matsukawa T, Villareal MO, Isoda H (2016) The type 2 diabetes-preventive effect of cyanidin-3-glucoside on adipocytes. J Dev Sustain Agri 11:31–35Google Scholar
  139. 139.
    Garcia-Diaz DF, Johnson MH, de Mejia EG (2014) Anthocyanins from fermented berry beverages inhibit inflammation related adiposity response in vitro. J Med Med 18:489–496Google Scholar
  140. 140.
    Prior RL, Wu X, Gu L, Hager TJ, Hager A, Howard LR (2008) Whole berries versus berry anthocyanins: interactions with dietary fat levels in C5&7BL/6J mouse model of obesity. J Agric Food Chem 56:647–653CrossRefGoogle Scholar
  141. 141.
    Tsuda T (2008) Regulation of adipocyte function by anthocyanins, possibility of preventing the metabolic syndrome. J Agric Food Chem 56:642–646CrossRefGoogle Scholar
  142. 142.
    Sancho RAS, Pastore GM (2012) Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int 46:378–386CrossRefGoogle Scholar
  143. 143.
    Al-Muammar MN, Kahn F (2012) Obesity: the preventive role of the pomegranate (Punica granatum). Nutrition 28:595–604CrossRefGoogle Scholar
  144. 144.
    Bigliardi B, Galati F (2013) Innovation trends in the food industry: the case of functional foods. Trends Food Sci Technol 31:118–129CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Natália Crialeison Balbo Vall Ribeiro
    • 1
  • Andressa Mara Baseggio
    • 1
  • Vicki Schlegel
    • 2
  1. 1.Department of Food Science, Faculty of Food EngineeringUniversity of CampinasCampinasBrazil
  2. 2.Department of Food Science and TechnologyUniversity of Nebraska LincolnLincolnUSA

Personalised recommendations