Various Techniques to Functionalize Nanofibers

  • Sakthivel NagarajanEmail author
  • Sebastien Balme
  • S. Narayana Kalkura
  • Philippe Miele
  • Celine Pochat Bohatier
  • Mikhael Bechelany
Reference work entry


Surface properties of a material control cell adhesion, adsorption, wettability, and colloidal stabilization. The surface functionalization of biomaterials or metals improves the biocompatibility and facilitates the cell attachment. It is established that the fabrication of superhydrophilic and superhydrophobic surface is feasible by surface functionalization. Surface-functionalized materials are found to be suitable to enhance cell material interaction. Hence, various surface functionalization methods carried out using procedures which involved covalent and noncovalent bonds are discussed. However, selection of a suitable functionalization and a reagent based upon the surface chemistry of the material is indispensable. This chapter mainly deals with the various surface functionalization techniques and describes the relevant approaches for activating the surface of the fibers. It provides the basic understanding about the selection of suitable reagent based on the available functional groups.


Drug delivery Surface modification Cell attachment Cell differentiation Plasma Electrospinning Nano fibers 


  1. 1.
    Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1(1):2–23CrossRefGoogle Scholar
  2. 2.
    Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50(8):1976–1987. 2017/08/15CrossRefGoogle Scholar
  3. 3.
    Aruna ST, Balaji LS, Kumar SS, Prakash BS (2017) Electrospinning in solid oxide fuel cells – a review. Renew Sust Energ Rev 67(Suppl C):673–682. 2017/01/01CrossRefGoogle Scholar
  4. 4.
    Rajendran D, Hussain A, Yip D, Parekh A, Shrirao A, Cho CH (2017) Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin. J Biomed Mater Res A 105(8):2119–2128CrossRefGoogle Scholar
  5. 5.
    Kim BJ, Cheong H, Choi E-S, Yun S-H, Choi B-H, Park K-S et al (2017) Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J Biomed Mater Res A 105(1):218–225CrossRefGoogle Scholar
  6. 6.
    Cheng J, Jun Y, Qin J, Lee S-H (2017) Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114(Suppl C):121–143. 2017/01/01CrossRefGoogle Scholar
  7. 7.
    Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD (2017) Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Ind Eng Chem Res 56(19):5724–5733. 2017/05/17CrossRefGoogle Scholar
  8. 8.
    Jana S, Zhang M (2013) Fabrication of 3D aligned nanofibrous tubes by direct electrospinning. J Mater Chem B 1(20):2575–2581CrossRefGoogle Scholar
  9. 9.
    Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528CrossRefGoogle Scholar
  10. 10.
    Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem, pp 1–24Google Scholar
  11. 11.
    Chen Y, Kim H (2009) Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly(vinylidene fluoride). Appl Surf Sci 255(15):7073–7077. 2009/05/15/CrossRefGoogle Scholar
  12. 12.
    Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D et al (2015) The effect of surface modification of aligned poly-l-lactic acid electrospun fibers on fiber degradation and neurite extension. PLoS One 10(9):e0136780CrossRefGoogle Scholar
  13. 13.
    Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y et al (2014) bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B 2(23):3636–3645CrossRefGoogle Scholar
  14. 14.
    Taskin MB, Xu R, Zhao H, Wang X, Dong M, Besenbacher F et al (2015) Poly(norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers. Phys Chem Chem Phys 17(14):9446–9453CrossRefGoogle Scholar
  15. 15.
    da Costa FFP, Araujo ES, De Oliveira HP et al (2015) Electrospun fibers of enteric polymer for controlled drug delivery. In J Polym Sci 2015:8Google Scholar
  16. 16.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042. 2009/10/05/CrossRefGoogle Scholar
  17. 17.
    Sharma J, Lizu M, Stewart M, Zygula K, Lu Y, Chauhan R et al (2015) Multifunctional nanofibers towards active biomedical therapeutics. Polymers 7(2):186. PubMed PMIDCrossRefGoogle Scholar
  18. 18.
    Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6):1312–1319. 2002/11/01CrossRefGoogle Scholar
  19. 19.
    Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2004) Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 5(2):463–473. 2004/03/01CrossRefGoogle Scholar
  20. 20.
    Mandracci P, Mussano F, Rivolo P, Carossa S (2016) Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 6(1):7. PubMed PMIDCrossRefGoogle Scholar
  21. 21.
    Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5):143–206. 2002/03/29CrossRefGoogle Scholar
  22. 22.
    Inagaki N (1996) Plasma surface modification and plasma polymerization. Taylor & Francis, Boca RatonGoogle Scholar
  23. 23.
    Lee S-D, Hsiue G-H, Chang PC-T, Kao C-Y (1996) Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17(16):1599–1608. 1996/01/01CrossRefGoogle Scholar
  24. 24.
    Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23(3):863–871. 2002/02/01CrossRefGoogle Scholar
  25. 25.
    Polini A, Pagliara S, Stabile R, Netti GS, Roca L, Prattichizzo C et al (2010) Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6(8):1668–1674CrossRefGoogle Scholar
  26. 26.
    Bao Y, Lai C, Zhu Z, Fong H, Jiang C (2013) SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Adv 3(23):8998–9004CrossRefGoogle Scholar
  27. 27.
    Liu W, Zhan J, Su Y, Wu T, Wu C, Ramakrishna S et al (2014) Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf B: Biointerfaces 113(Suppl C):101–106. 2014/01/01CrossRefGoogle Scholar
  28. 28.
    Ardeshirylajimi A, Dinarvand P, Seyedjafari E, Langroudi L, Jamshidi Adegani F, Soleimani M (2013) Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res 354(3):849–860CrossRefGoogle Scholar
  29. 29.
    Chen J-P, Su C-H (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243. 2011/01/01CrossRefGoogle Scholar
  30. 30.
    He W, Ma Z, Yong T, Teo WE, Ramakrishna S (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26(36):7606–7615. 2005/12/01CrossRefGoogle Scholar
  31. 31.
    Sd V, Tille J-C, Chaabane C, Gurny R, Bochaton-Piallat M-L, Walpoth BH et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85(1):78–86. 2013/09/01CrossRefGoogle Scholar
  32. 32.
    Cheng Q, Komvopoulos K, Li S (2014) Plasma-assisted heparin conjugation on electrospun poly(l-lactide) fibrous scaffolds. J Biomed Mater Res A 102(5):1408–1414CrossRefGoogle Scholar
  33. 33.
    Baek HS, Park YH, Ki CS, Park J-C, Rah DK (2008) Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf Coat Technol 202(22):5794–5797. 2008/08/30CrossRefGoogle Scholar
  34. 34.
    Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19(5):1743–1748CrossRefGoogle Scholar
  35. 35.
    Dolci LS, Quiroga SD, Gherardi M, Laurita R, Liguori A, Sanibondi P et al (2014) Carboxyl surface functionalization of poly(l-lactic acid) electrospun nanofibers through atmospheric non-thermal plasma affects fibroblast morphology. Plasma Process Polym 11(3):203–213CrossRefGoogle Scholar
  36. 36.
    Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG et al (2015) Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog Org Coat 85:151–158CrossRefGoogle Scholar
  37. 37.
    Jia J, Duan Y-Y, Yu J, Lu J-W (2008) Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth. J Biomed Mater Res A 86A(2):364–373CrossRefGoogle Scholar
  38. 38.
    Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL et al (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206Google Scholar
  39. 39.
    Yan D, Jones J, Yuan XY, Xu XH, Sheng J, Lee JCM et al (2013) Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J Biomed Mater Res A 101A(4):963–972CrossRefGoogle Scholar
  40. 40.
    McCord MG, Hwang YJ, Qiu Y, Hughes LK, Bourham MA (2003) Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. J Appl Polym Sci 88(8):2038–2047CrossRefGoogle Scholar
  41. 41.
    Arjun GN, Menon G, Ramesh P (2014) Plasma surface modification of fibroporous polycarbonate urethane membrane by polydimethyl siloxane: structural characterization, mechanical properties, and in vitro cytocompatibility evaluation. J Biomed Mater Res A 102(4):947–957CrossRefGoogle Scholar
  42. 42.
    Uygun A, Kiristi M, Oksuz L, Manolache S, Ulusoy S (2011) RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications. Carbohydr Res 346(2):259–265. 2011/02/01CrossRefGoogle Scholar
  43. 43.
    Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS (2007) Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28(5):861–868. 2007/02/01CrossRefGoogle Scholar
  44. 44.
    Sun H, Önneby S (2006) Facile polyester surface functionalization via hydrolysis and cell-recognizing peptide attachment. Polym Int 55(11):1336–1340CrossRefGoogle Scholar
  45. 45.
    Yuan X, Mak AFT, Yao K (2003) Surface degradation of poly(l-lactic acid) fibres in a concentrated alkaline solution. Polym Degrad Stab 79(1):45–52. 2003/01/01CrossRefGoogle Scholar
  46. 46.
    Wang Z-G, Wan L-S, Liu Z-M, Huang X-J, Xu Z-K (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56(4):189–195. 2009/04/01/CrossRefGoogle Scholar
  47. 47.
    Chen W-C, Chen C-H, Tseng H-W, Liu Y-W, Chen Y-P, Lee C-H et al (2017) Surface functionalized electrospun fibrous poly(3-hydroxybutyrate) membranes and sleeves: a novel approach for fixation in anterior cruciate ligament reconstruction. J Mater Chem B 5(3):553–564CrossRefGoogle Scholar
  48. 48.
    Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B (2016) Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Interfaces 8(18):11819–11829. 2016/05/11CrossRefGoogle Scholar
  49. 49.
    Li L, Hsieh Y-L (2005) Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid). Polymer 46(14):5133–5139. 2005/06/27CrossRefGoogle Scholar
  50. 50.
    Baştürk E, Demir S, Danış Ö, Kahraman MV (2013) Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127(1):349–355CrossRefGoogle Scholar
  51. 51.
    Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) “Clickable” polymeric nanofibers through hydrophilic–hydrophobic balance: fabrication of robust biomolecular immobilization platforms. Biomacromolecules 16(5):1590–1597. 2015/05/11CrossRefGoogle Scholar
  52. 52.
    Zheng J, Liu K, Reneker DH, Becker ML (2012) Post-assembly derivatization of electrospun nanofibers via strain-promoted azide alkyne cycloaddition. J Am Chem Soc 134(41):17274–17277. 2012/10/17CrossRefGoogle Scholar
  53. 53.
    Fu GD, Xu LQ, Yao F, Zhang K, Wang XF, Zhu MF et al (2009) Smart nanofibers from combined living radical polymerization, “click chemistry”, and electrospinning. ACS Appl Mater Interfaces 1(2):239–243. 2009/02/25CrossRefGoogle Scholar
  54. 54.
    Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) Reactive and ‘clickable’ electrospun polymeric nanofibers. Polym Chem 6(18):3372–3381CrossRefGoogle Scholar
  55. 55.
    Lin F, Yu J, Tang W, Zheng J, Xie S, Becker ML (2013) Postelectrospinning “click” modification of degradable amino acid-based poly(ester urea) nanofibers. Macromolecules 46(24):9515–9525. 2013/12/23CrossRefGoogle Scholar
  56. 56.
    Farris S, Song J, Huang Q (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58(2):998–1003. 2010/01/27CrossRefGoogle Scholar
  57. 57.
    Pritchard CD, Arnér KM, Neal RA, Neeley WL, Bojo P, Bachelder E et al (2010) The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 31(8):2153–2162. 2010/03/01CrossRefGoogle Scholar
  58. 58.
    Wang Z-G, Ke B-B, Xu Z-K (2007) Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol Bioeng 97(4):708–720CrossRefGoogle Scholar
  59. 59.
    Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A (2011) Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7(4):1702–1709. 2011/04/01CrossRefGoogle Scholar
  60. 60.
    Mekhail M, Wong KKH, Padavan DT, Wu Y, O’Gorman DB, Wan W (2011) Genipin-cross-linked electrospun collagen fibers. J Biomater Sci Polym Ed 22(17):2241–2259. 2011/01/01CrossRefGoogle Scholar
  61. 61.
    Jae Suk Y, Yong Jin K, Soo Hwan K, Seung Hwa C (2011) Study on Genipin: a new alternative natural crosslinking agent for fixing heterograft tissue. Korean J Thorac Cardiovasc Surg 44(3):197–207CrossRefGoogle Scholar
  62. 62.
    Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2009) Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 1(1):218–223. 2009/01/28CrossRefGoogle Scholar
  63. 63.
    Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Rev Int 17(2):221–246. 2001/02/04CrossRefGoogle Scholar
  64. 64.
    Gauche C, Vieira JTC, Ogliari PJ, Bordignon-Luiz MT (2008) Crosslinking of milk whey proteins by transglutaminase. Process Biochem 43(7):788–794. 2008/07/01CrossRefGoogle Scholar
  65. 65.
    Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26(10):559–565. 2008/10/01CrossRefGoogle Scholar
  66. 66.
    Liu T, Xu J, Chan BP, Chew SY (2012) Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A 100A(1):236–242CrossRefGoogle Scholar
  67. 67.
    Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36(2):191–217. 2011/02/01CrossRefGoogle Scholar
  68. 68.
    Roesler RR, Danielmeier K (2004) Tris-3-(1-aziridino)propionates and their use in formulated products. Prog Org Coat 50(1):1–27. 2004/06/01CrossRefGoogle Scholar
  69. 69.
    Hermanson GT (2008) Functional targets, Chapter 1. In: Bioconjugate techniques, 2nd edn. Academic, New York, pp 1–168Google Scholar
  70. 70.
    Tomihata K, Ikada Y (1997) Crosslinking of hyaluronic acid with glutaraldehyde. J Polym Sci A Polym Chem 35(16):3553–3559CrossRefGoogle Scholar
  71. 71.
    Zhu B-K, Wei X-Z, Xiao L, Xu Y-Y, Geckeler KE (2006) Preparation and properties of hyperbranched poly(amine-ester) films using acetal cross-linking units. Polym Int 55(1):63–70CrossRefGoogle Scholar
  72. 72.
    Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5(101):83436–83447CrossRefGoogle Scholar
  73. 73.
    Olde Damink LHH, Dijkstra PJ, Van Luyn MJA, Van Wachem PB, Nieuwenhuis P, Feijen J (1995) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6(8):460–472CrossRefGoogle Scholar
  74. 74.
    Versace D-L, Ramier J, Grande D, Andaloussi SA, Dubot P, Hobeika N et al (2013) Versatile photochemical surface modification of biopolyester microfibrous scaffolds with photogenerated silver nanoparticles for antibacterial activity. Adv Healthc Mater 2(7):1008–1018CrossRefGoogle Scholar
  75. 75.
    Matyjaszewski K, Spanswick J (2005) Controlled/living radical polymerization. Mater Today 8(3):26–33. 2005/03/01CrossRefGoogle Scholar
  76. 76.
    Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113(Suppl C):200–207. 2014/11/26CrossRefGoogle Scholar
  77. 77.
    Jia W, Wu Y, Huang J, An Q, Xu D, Wu Y et al (2010) Poly(ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. J Mater Chem 20(39):8617–8623CrossRefGoogle Scholar
  78. 78.
    Ameringer T, Ercole F, Tsang KM, Coad BR, Hou X, Rodda A et al (2013) Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions. Biointerphases 8(1):16CrossRefGoogle Scholar
  79. 79.
    Rodda AE, Ercole F, Glattauer V, Nisbet DR, Healy KE, Dove AP et al (2016) Controlling integrin-based adhesion to a degradable electrospun fibre scaffold via SI-ATRP. J Mater Chem B 4(45):7314–7322CrossRefGoogle Scholar
  80. 80.
    Yang J, Bei J, Wang S (2002) Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23(12):2607–2614. 2002/06/01CrossRefGoogle Scholar
  81. 81.
    Wyrwa R, Finke B, Rebl H, Mischner N, Quaas M, Schaefer J et al (2011) Design of plasma surface-activated, electrospun polylactide non-wovens with improved cell acceptance. Adv Eng Mater 13(5):B165–BB71CrossRefGoogle Scholar
  82. 82.
    Abrigo M, Kingshott P, McArthur SL (2015) Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers. Biointerphases 10(4):04A301CrossRefGoogle Scholar
  83. 83.
    Y-m L, Li Q, H-h L, Cheng H-h YJ, Guo Z-x (2017) Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chin J Polym Sci 35(6):713–720CrossRefGoogle Scholar
  84. 84.
    Jassal M, Sengupta S, Bhowmick S (2015) Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J Biomater Sci Polym Ed 26(18):1425–1438. 2015/12/12CrossRefGoogle Scholar
  85. 85.
    Xiang Y, Lu S, Jiang SP (2012) Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 41(21):7291–7321CrossRefGoogle Scholar
  86. 86.
    Müller K, Quinn JF, Johnston APR, Becker M, Greiner A, Caruso F (2006) Polyelectrolyte functionalization of electrospun fibers. Chem Mater 18(9):2397–2403. 2006/05/01CrossRefGoogle Scholar
  87. 87.
    Chen L, Bromberg L, Lee JA, Zhang H, Schreuder-Gibson H, Gibson P et al (2010) Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection. Chem Mater 22(4):1429–1436. 2010/02/23CrossRefGoogle Scholar
  88. 88.
    Saetia K, Schnorr JM, Mannarino MM, Kim SY, Rutledge GC, Swager TM et al (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater 24(4):492–502CrossRefGoogle Scholar
  89. 89.
    Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15(5):196–206. 2012/05/01CrossRefGoogle Scholar
  90. 90.
    Gao Y, Wang Y, Wang Y, Cui W (2016) Fabrication of gelatin-based electrospun composite fibers for anti-bacterial properties and protein adsorption. Mar Drugs 14(10):192. PubMed PMIDCrossRefGoogle Scholar
  91. 91.
    Esfahani H, Prabhakaran MP, Salahi E, Tayebifard A, Keyanpour-Rad M, Rahimipour MR et al (2015) Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: kinetics and isotherm. J Colloid Interface Sci 443(Suppl C):143–152. 2015/04/01CrossRefGoogle Scholar
  92. 92.
    Lan T, Shao Z-Q, Wang J-Q, Gu M-J (2015) Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem Eng J 260(Suppl C):818–825. 2015/01/15CrossRefGoogle Scholar
  93. 93.
    Regis S, Youssefian S, Jassal M, Phaneuf MD, Rahbar N, Bhowmick S (2014) Fibronectin adsorption on functionalized electrospun polycaprolactone scaffolds: experimental and molecular dynamics studies. J Biomed Mater Res A 102(6):1697–1706CrossRefGoogle Scholar
  94. 94.
    Porcar I, Cottet H, Gareil P, Tribet C (1999) Association between protein particles and long amphiphilic polymers: effect of the polymer hydrophobicity on binding isotherms. Macromolecules 32(12):3922–3929. 1999/06/01CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sakthivel Nagarajan
    • 1
    • 2
    Email author
  • Sebastien Balme
    • 4
  • S. Narayana Kalkura
    • 2
  • Philippe Miele
    • 1
    • 3
  • Celine Pochat Bohatier
    • 1
  • Mikhael Bechelany
    • 5
  1. 1.Institute of European Membranes, IEM UMR-5635University of Montpellier, ENSCM, CNRSMontpellierFrance
  2. 2.Crystal Growth Centre, Anna UniversityChennaiIndia
  3. 3.Institut Universitaire de France (IUF)University of MESRIParisFrance
  4. 4.Institute of European Membranes (IEM)University of MontpellierMontpellierFrance
  5. 5.Institut Européen desMembranes, IEM – UMR 5635ENSCM, CNRS, Univ MontpellierMontpellierFrance

Personalised recommendations