Advertisement

Methanogenesis from Carbon Monoxide

  • Christian Schöne
  • Michael Rother
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The biological formation of methane, methanogenesis, constitutes the final step of biomass degradation in anaerobic environments where exogenous electron acceptors are scarce. It is therefore a fundamentally important aspect of the global carbon cycle. The organisms responsible are methanogenic archaea (methanogens), a diverse but monophyletic group within the Euryarchaeota. The major metabolic substrates for methanogenic energy metabolism are H2 + CO2, methylated compounds, and acetate. From a bioenergetic and biochemical standpoint, carbon monoxide (CO), a toxic, odorless, flammable gas, which accrues from incomplete combustion, could be considered an excellent source of energy and carbon for methanogens, but the capacity to grow on CO, i.e., carboxidotrophic growth, has been demonstrated only for a few methanogenic species. It appears that CO is not a well-suited methanogenic substrate due to its toxicity toward transition metal-containing enzymes and the negative reduction potential of the CO2/CO couple. In this chapter, we will summarize current knowledge about the catabolic pathways of CO utilization in hydrogenotrophic and methylotrophic methanogens, how they are coupled to energy conservation, and how they cope with the unfavorable properties of CO.

Notes

Acknowledgments 

We are grateful for financial support from the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung.

References

  1. Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032PubMedPubMedCentralGoogle Scholar
  2. Blasing TJ (2016) Recent greenhouse gas concentrations. Oak Ridge National Lab, Oak Ridge.  https://doi.org/10.3334/CDIAC/atg.032Google Scholar
  3. Blaut M, Gottschalk G (1984) Proton motive force-driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol Lett 24:103–107CrossRefGoogle Scholar
  4. Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131PubMedCrossRefGoogle Scholar
  5. Boone DR, Mah RA (1989) Methanobacterium. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, 1st edn. The Williams & Wilkins Co., Baltimore, pp 2175–2177Google Scholar
  6. Boone DR, Whitman WB, Rouviere P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 35–80CrossRefGoogle Scholar
  7. Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O et al (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679PubMedPubMedCentralCrossRefGoogle Scholar
  8. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedPubMedCentralGoogle Scholar
  9. Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA et al (2010) Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci U S A 107:11050–11055PubMedPubMedCentralCrossRefGoogle Scholar
  10. Daniel JS, Solomon S (1998) On the climate forcing of carbon monoxide. J Geophys Res 103:13249–13260CrossRefGoogle Scholar
  11. Daniell J, Nagaraju S, Burton F, Kopke M, Simpson SD (2016) Low-carbon fuel and chemical production by anaerobic gas fermentation. Adv Biochem Eng Biotechnol 156:293–321PubMedGoogle Scholar
  12. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126PubMedPubMedCentralGoogle Scholar
  13. Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283PubMedCrossRefGoogle Scholar
  14. Deppenmeier U, Müller V (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. In: Schäfer G, Penefsky HS (eds) Bioenergetics: energy conservation and conversion. Springer, Heidelberg, pp 123–152Google Scholar
  15. Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1275PubMedPubMedCentralCrossRefGoogle Scholar
  16. Diender M, Pereira RAG, Wessels HJCT, Stams AJM, Sousa DZ (2016) Proteomic analysis of the hydrogen and carbon monoxide metabolism of Methanothermobacter marburgensis. Front Microbiol 7:1049PubMedPubMedCentralCrossRefGoogle Scholar
  17. Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17:4583–4593PubMedCrossRefGoogle Scholar
  18. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl coenzyme M reductase – the key enzyme of biological methane formation. Science 278:1457–1462PubMedCrossRefGoogle Scholar
  19. Ferry JG (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors 6:25–35PubMedCrossRefGoogle Scholar
  20. Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38PubMedCrossRefGoogle Scholar
  21. Ferry JG (2010a) Biochemistry of acetotrophic methanogenesis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1st edn. Springer, Berlin/Heidelberg, pp 357–367CrossRefGoogle Scholar
  22. Ferry JG (2010b) CO in methanogenesis. Ann Microbiol 60:1–12CrossRefGoogle Scholar
  23. Fischer R, Thauer RK (1990) Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett 269:368–372PubMedCrossRefGoogle Scholar
  24. Fischer F, Lieske R, Winzer K (1931) Biologische Gasreaktionen. Die Umsetzungen des Kohlenoxyds. Biochem Z 236:247–267Google Scholar
  25. Fontecilla-Camps JC (2009) Structure and function of [NiFe]-hydrogenases. Met Ions Life Sci 6:151–178PubMedCrossRefGoogle Scholar
  26. Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, Gottschalk G et al (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fu H, Metcalf WW (2015) Genetic basis for metabolism of methylated sulfur compounds in Methanosarcina species. J Bacteriol 197:1515–1524PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66PubMedCrossRefGoogle Scholar
  29. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedPubMedCentralCrossRefGoogle Scholar
  30. Garrity GM, Labeda DP, Oren A (2011) Judicial Commission of the International Committee on Systematics of Prokaryotes – XIIth International (IUMS) congress of bacteriology and applied microbiology. Int J Syst Evol Microbiol 61:2775–2780CrossRefGoogle Scholar
  31. Gottschalk G (1986) Bacterial fermentations. In: Bacterial Metabolism, 2nd edn. Springer, New York, pp 208–282Google Scholar
  32. Gottschalk G, Thauer RK (2001) The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36PubMedCrossRefGoogle Scholar
  33. Grahame DA (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem 266:22227–22233PubMedGoogle Scholar
  34. Grahame DA, Demoll E (1995) Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry 34:4617–4624PubMedCrossRefGoogle Scholar
  35. Grahame DA, Gencic S, DeMoll E (2005) A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol 184:32–40PubMedCrossRefGoogle Scholar
  36. Graven WM, Long FJ (1954) Kinetics and mechanisms of the two opposing reactions of the equilibrium CO + H2O = CO2 + H2. J Am Chem Soc 76:2602–2607Google Scholar
  37. Gullotta F, di Masi A, Coletta M, Ascenzi P (2012) CO metabolism, sensing, and signaling. Biofactors 38:1–13PubMedCrossRefGoogle Scholar
  38. Gunsalus RP, Wolfe RS (1977) Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts Methanobacterium. Biochem Biophys Res Commun 76:790–795Google Scholar
  39. Guss AM, Kulkarni G, Metcalf WW (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 191:2826–2833PubMedPubMedCentralCrossRefGoogle Scholar
  40. Haab P (1990) The effect of carbon monoxide on respiration. Experientia 46:1202–1206PubMedCrossRefGoogle Scholar
  41. Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104PubMedCrossRefGoogle Scholar
  42. Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381CrossRefGoogle Scholar
  43. Henstra AM, Stams AJ (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70:7236–7240PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hess V, Schuchmann K, Müller V (2013) The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–31502PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ide T, Bäumer S, Deppenmeier U (1999) Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. J Bacteriol 181:4076–4080PubMedPubMedCentralGoogle Scholar
  46. Jacobitz S, Meyer O (1989) Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol 171:6294–6299PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jasso-Chavez R, Apolinario EE, Sowers KR, Ferry JG (2013) MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans. J Bacteriol 195:3987–3994PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jeoung J-H, Fesseler J, Goetzl S, Dobbek H (2014) Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. In: Kroneck PMH, Sosa-Torres ME (eds) The metal-driven biogeochemistry of gaseous compounds in the environment. Springer, Dordrecht, pp 37–69Google Scholar
  49. Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using14C tracers. J Water Pollut Control Fed 37:178–192Google Scholar
  50. Jetten MS, Stams AJ, Zehnder AJ (1989) Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. Eur J Biochem 181:437–441PubMedCrossRefGoogle Scholar
  51. Jetten MS, Stams AJ, Zehnder AJ (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev 10:181–197CrossRefGoogle Scholar
  52. Joye SB (2012) Microbiology: a piece of the methane puzzle. Nature 491:538–539PubMedCrossRefGoogle Scholar
  53. Kaster AK, Moll J, Parey K, Thauer RK (2011) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci U S A 108:2981–2986PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kaye GWC, Laby TH (1986) Tables of physical and chemical constants, 15th edn. Wiley, New YorkGoogle Scholar
  55. Keltjens JT, Vogels GD (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 253–303CrossRefGoogle Scholar
  56. Khalil MAK, Rasmussen RA (1990) The global cycle of carbon monoxide – trends and mass balance. Chemosphere 20:227–242CrossRefGoogle Scholar
  57. Kim YM, Park SW (2012) Microbiology and genetics of CO utilization in mycobacteria. Antonie Van Leeuwenhoek 101:685–700PubMedCrossRefGoogle Scholar
  58. King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118PubMedCrossRefGoogle Scholar
  59. Kliefoth M, Langer JD, Matschiavelli N, Oelgeschläger E, Rother M (2012) Genetic analysis of MA4079, an aldehyde dehydrogenase homolog, in Methanosarcina acetivorans. Arch Microbiol 194:75–85PubMedCrossRefGoogle Scholar
  60. Kluyver AJ, Schnellen C (1947) On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 14:57–70PubMedGoogle Scholar
  61. Kröninger L, Berger S, Welte C, Deppenmeier U (2016) Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. FEBS J 283:472–483PubMedCrossRefGoogle Scholar
  62. Kulkarni G, Kridelbaugh DM, Guss AM, Metcalf WW (2009) Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. Proc Natl Acad Sci U S A 106:15915–15920PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci U S A 87:5598–5602PubMedPubMedCentralCrossRefGoogle Scholar
  64. Leigh JA, Rinehart KL, Wolfe RS (1984) Structure of Methanofuran, the carbon dioxide reduction factor of Methanobacterium thermoautotrophicum. J Am Chem Soc 106:3636–3640CrossRefGoogle Scholar
  65. Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M, Hill K et al (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci U S A 103:17921–17926PubMedPubMedCentralCrossRefGoogle Scholar
  66. Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188:702–710PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li L, Li Q, Rohlin L, Kim U, Salmon K, Rejtar T, Gunsalus RP et al (2007) Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res 6:759–771PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry 41:2097–2105PubMedCrossRefGoogle Scholar
  69. Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434PubMedCrossRefGoogle Scholar
  70. Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Ferry JG (ed) Acetogenesis. Chapman & Hall, New York, pp 63–87CrossRefGoogle Scholar
  71. Lovley DR, Ferry JG (1985) Production and consumption of hydrogen during growth of Methanosarcina spp. on acetate. Appl Environ Microbiol 49:247–249PubMedPubMedCentralGoogle Scholar
  72. Luo G, Wang W, Angelidaki I (2013) Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology. Environ Sci Technol 47:10685–10693PubMedGoogle Scholar
  73. Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond Ser B Biol Sci 362:1887–1925CrossRefGoogle Scholar
  74. Matschiavelli N (2015) Analyse der Formiat-Bildung in Methanosarcina acetivorans. PhD thesis, Department of Biology, Technische Universität Dresden, DresdenGoogle Scholar
  75. Matschiavelli N, Rother M (2015) Role of a putative tungsten-dependent formylmethanofuran dehydrogenase in Methanosarcina acetivorans. Arch Microbiol 197:379–388PubMedCrossRefGoogle Scholar
  76. Matschiavelli N, Oelgeschläger E, Cocchiararo B, Finke J, Rother M (2012) Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl-CoA synthase in Methanosarcina acetivorans. J Bacteriol 194:5377–5387PubMedPubMedCentralCrossRefGoogle Scholar
  77. Maynard EL, Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 121:9221–9222CrossRefGoogle Scholar
  78. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72PubMedCrossRefGoogle Scholar
  79. Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A 99:5632–5637PubMedPubMedCentralCrossRefGoogle Scholar
  80. Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol 37:277–310PubMedCrossRefGoogle Scholar
  81. Meyer O, Jacobitz S, Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev 39:161–179CrossRefGoogle Scholar
  82. Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542PubMedCrossRefGoogle Scholar
  83. Morgan RM, Pihl TD, Nölling J, Reeve JN (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum ΔH. J Bacteriol 179:889–898PubMedPubMedCentralCrossRefGoogle Scholar
  84. Müller V, Blaut M, Gottschalk G (1993) Bioenergetics of methanogenesis. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 360–406CrossRefGoogle Scholar
  85. Murrell JC (2010) The aerobic methane oxidizing bacteria (methanotrophs). In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1953–1966CrossRefGoogle Scholar
  86. Nelson MJ, Ferry JG (1984) Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol 160:526–532PubMedPubMedCentralGoogle Scholar
  87. O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375PubMedPubMedCentralGoogle Scholar
  88. Odom JM, Peck HD (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:74–50CrossRefGoogle Scholar
  89. Oelgeschläger E (2009) Genetische und physiologische Analysen des Kohlenmonoxid-Stoffwechsels in Methanosarcina acetivorans. PhD thesis, Department of Molecular Biosciences, Johann Wolfgang Goethe-Universität, Frankfurt am MainGoogle Scholar
  90. Oelgeschläger E, Rother M (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190:257–269PubMedCrossRefGoogle Scholar
  91. Oelgeschläger E, Rother M (2009a) In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Mol Microbiol 72:1260–1272PubMedCrossRefGoogle Scholar
  92. Oelgeschläger E, Rother M (2009b) Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans. FEMS Microbiol Lett 292:254–260PubMedCrossRefGoogle Scholar
  93. Peters JW (2009) Carbon monoxide and cyanide ligands in the active site of [FeFe]-hydrogenases. Met Ions Life Sci 6:179–218PubMedCrossRefGoogle Scholar
  94. Pomper BK, Saurel O, Milon A, Vorholt JA (2002) Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett 523:133–137PubMedCrossRefGoogle Scholar
  95. Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195PubMedCrossRefGoogle Scholar
  96. Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539PubMedCrossRefGoogle Scholar
  97. Rivera M, Rodriguez JC (2009) The dual role of heme as cofactor and substrate in the biosynthesis of carbon monoxide. Met Ions Life Sci 6:241–293PubMedCrossRefGoogle Scholar
  98. Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci U S A 101:16929–16934PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rother M, Oelgeschläger E, Metcalf WW (2007) Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol 188:463–472PubMedCrossRefGoogle Scholar
  100. Sancho Navarro S, Cimpoia R, Bruant G, Guiot SR (2016) Biomethanation of syngas using anaerobic sludge: shift in the catabolic routes with the CO partial pressure increase. Front Microbiol 7:1188PubMedPubMedCentralCrossRefGoogle Scholar
  101. Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8:697–751CrossRefGoogle Scholar
  102. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  103. Schlegel K, Leone V, Faraldo-Gomez JD, Müller V (2012a) Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci U S A 109:947–952PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schlegel K, Welte C, Deppenmeier U, Müller V (2012b) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J 279:4444–4452PubMedCrossRefGoogle Scholar
  105. Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M et al (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615PubMedCrossRefGoogle Scholar
  106. Seravalli J, Ragsdale SW (2000) Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39:1274–1277PubMedCrossRefGoogle Scholar
  107. Shima S, Thauer RK, Ermler U (2009) Carbon monoxide as intrinsic ligand to iron in the active site of [Fe]-hydrogenase. Met Ions Life Sci 6:219–240PubMedCrossRefGoogle Scholar
  108. Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJ (2006) Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 26:41–65PubMedCrossRefGoogle Scholar
  109. Slobodkin AI, Sokolova TG, Lysenko AM, Wiegel J (2006) Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus. Int J Syst Evol Microbiol 56:2349–2351PubMedCrossRefGoogle Scholar
  110. Sokolova TG, Henstra AM, Sipma J, Parshina SN, Stams AJ, Lebedinsky AV (2009) Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141PubMedCrossRefGoogle Scholar
  111. Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, Ciordia S et al (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2:17081PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978PubMedPubMedCentralGoogle Scholar
  113. Stojanowic A, Hedderich R (2004) CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor. FEMS Microbiol Lett 235:163–167PubMedCrossRefGoogle Scholar
  114. Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl coenzyme a during autotrophic growth of Methanobacterium. FEBS Lett 152:21–23PubMedCrossRefGoogle Scholar
  115. Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H (2006) Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-CoA synthesis. Proc Natl Acad Sci U S A 103:14331–14336PubMedPubMedCentralCrossRefGoogle Scholar
  116. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R et al (2004) A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci U S A 101:446–451PubMedCrossRefGoogle Scholar
  117. Swinnerton JW, Linnenbom VJ, Lamontagne RA (1970) The ocean: a natural source of carbon monoxide. Science 167:984–986PubMedCrossRefGoogle Scholar
  118. Tallant TC, Paul L, Krzycki JA (2001) The MtsA subunit of the methylthiol:coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer. J Biol Chem 276:4485–4493PubMedCrossRefGoogle Scholar
  119. Terlesky KC, Ferry JG (1988) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J Biol Chem 263:4075–4079PubMedGoogle Scholar
  120. Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508PubMedCrossRefGoogle Scholar
  121. Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299PubMedCrossRefGoogle Scholar
  122. Thauer RK (2012) The Wolfe cycle comes full circle. Proc Natl Acad Sci U S A 109:15084–15085PubMedPubMedCentralCrossRefGoogle Scholar
  123. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591PubMedCrossRefGoogle Scholar
  124. Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536PubMedCrossRefGoogle Scholar
  125. Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, Greiner G, Beifuss U (2003) Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea. Chembiochem 4:333–3356PubMedCrossRefGoogle Scholar
  126. Vepachedu VR, Ferry JG (2012) Role of the fused corrinoid/methyl transfer protein CmtA during CO-dependent growth of Methanosarcina acetivorans. J Bacteriol 194:4161–4168PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wagner T, Ermler U, Shima S (2016) The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114–117PubMedCrossRefGoogle Scholar
  128. Wang M, Tomb JF, Ferry JG (2011) Electron transport in acetate-grown Methanosarcina acetivorans. BMC Microbiol 11:165PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wasserfallen A, Nölling J, Pfister P, Reeve J, Conway de Macario E (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50 Pt 1:43–53PubMedCrossRefGoogle Scholar
  130. Weinstock B, Niki H (1972) Carbon monoxide balance in nature. Science 176:290–292PubMedCrossRefGoogle Scholar
  131. Welte C, Deppenmeier U (2011) Re-evaluation of the function of the F420 dehydrogenase in electron transport of Methanosarcina mazei. FEBS J 278:1277–1287PubMedCrossRefGoogle Scholar
  132. Welte C, Deppenmeier U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta 1837:1130–1147PubMedCrossRefGoogle Scholar
  133. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes-a handbook on the biology of bacteria, 3rd edn. Springer, New York, pp 165–207Google Scholar
  134. Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth-Sci Rev 57:177–210CrossRefGoogle Scholar
  135. Yan Z, Wang M, Ferry JG (2017) A ferredoxin- and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains bacteria and archaea. MBio 8:e02285-02216CrossRefGoogle Scholar
  136. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–715PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für MikrobiologieTechnische Universität DresdenDresdenGermany

Personalised recommendations