Skip to main content

Atmospheric Turbulence

  • Reference work entry
  • First Online:
  • 75 Accesses

Synonyms

Instability; Turbulent eddies; Vortices

Definition

Atmospheric turbulence is irregular fluctuations occurring in atmospheric air flow. These fluctuations are random and continuously changing and are superimposed on the mean motion of the air (American Meteorological Society 2018).

Introduction

It has long been established that the behavior of wildland fires and the dispersion of smoke during wildland fire events are influenced by ambient and fire-induced winds (Crosby 1949; Byram and Nelson 1951; Byram 1954; Gifford 1957; Rothermel 1972; Raupach 1990; Beer 1991). Fundamentally, ambient and fire-induced winds affect the horizontal and vertical convective flux of heat in the fire environment and the ability of spreading fires to transfer heat convectively to potential fuels (Rothermel 1972). The transport of firebrands away from active burning locations and the opportunity for spotting ignitions are also governed by the ambient and fire-induced wind fields within and near the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander ME, Stocks BJ, Wutton BM, Flannigan MD, Todd JB, Butler BW, Lanoville RA (1998) The international crown fire modeling experiment: an overview and progress report. Second Symposium on Fire and Forest Meteorology, American Meteorological Society, pp 20–23

    Google Scholar 

  • American Meteorological Society (2018) Turbulence. Glossary of meteorology. Available online at http://glossary.ametsoc.org/wiki/turbulence

  • Amiro BD (1990) Drag coefficients and turbulence spectra within three boreal forest canopies. Bound-Layer Meteorol 52:227–246

    Google Scholar 

  • Baldocchi DD, Meyers TP (1988) A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Bound-Layer Meteorol 45:31–58

    Google Scholar 

  • Banta RM, Olivier LD, Holloway ET, Kropfli RA, Bartram BW, Cupp RE, Post MJ (1992) Smoke column observations from two forest fires using Doppler lidar and Doppler radar. J Appl Meteorol 31:1328–1349

    Google Scholar 

  • Batchelor GK (1950) The application of the similarity theory of turbulence to atmospheric diffusion. Q J R Meteorol Soc 76:133–146

    Google Scholar 

  • Beer T (1991) The interaction of wind and fire. Bound-Layer Meteorol 54:287–308

    Google Scholar 

  • Berman S (1965) Estimating the longitudinal wind spectrum near the ground. Q J R Meteorol Soc 91:302–317

    Google Scholar 

  • Best AC (1935) Transfer of heat and momentum in lowest layers of the atmosphere. Geophysical Memoris, Meteorological Office in London, England, no 65

    Google Scholar 

  • Biltoft CA (2001) Some thoughts on local isotropy and the 4/3 lateral to longitudinal velocity spectrum ratio. Bound-Layer Meteorol 100:393–404

    Google Scholar 

  • Busch NE, Panofsky HA (1968) Recent spectra of atmospheric turbulence. Q J R Meteorol Soc 94:132–148

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Google Scholar 

  • Byram, GM (1954) Atmospheric conditions related to blowup fires. Station paper no. 35, USDA Forest Service, Southeastern Forest Experiment Station, Asheville

    Google Scholar 

  • Byram GM, Martin RE (1970) The modeling of fire whirlwinds. For Sci 16:386–399

    Google Scholar 

  • Byram GM, Nelson RM (1951) The possible relation of air turbulence to erratic fire behavior in the southeast. Fire Control Notes 12:1–8

    Google Scholar 

  • Byron-Scott RAD (1990) The effects of ridge-top and lee-slope fires upon rotor motions in the lee of a steep ridge. Math Comput Model 13:103–112

    Google Scholar 

  • Canfield JM, Linn RR, Sauer JA, Finney M, Forthofer J (2014) A numerical investigation of the interplay between fireline length, geometry, and rate of spread. Agric For Meteorol 189–190:48–59

    Google Scholar 

  • Charland AM, Clements CB (2013) Kinematic structure of a wildland fire plume observed by Doppler lidar. J Geophys Res - Atmos 118:1–13

    Google Scholar 

  • Church CF, Snow JT (1985) Observations of vortices produced by the Météotron. J Rech Atmosph 19:455–467

    Google Scholar 

  • Church CR, Snow JT, Dessens J (1980) Intense atmospheric vortices associated with a 1000 MW fire. Bull Am Meteorol Soc 61:682–694

    Google Scholar 

  • Clark TL, Jenkins MA, Coen JL, Packham DR (1996a) A coupled atmosphere-fire model: role of the convective Froude number and dynamic fingering at the fireline. Int J Wildland Fire 6:177–190

    Google Scholar 

  • Clark TL, Jenkins MA, Coen JL, Packham DR (1996b) A coupled atmosphere-fire model: convective feedback on fire-line dynamics. J Appl Meteorol 35:875–901

    Google Scholar 

  • Clark TL, Coen J, Latham D (2004) Description of a coupled atmosphere-fire model. Int J Wildland Fire 13:49–63

    Google Scholar 

  • Clarke RH, Dyer AJ, Brook RR, Reid DG, Troup AJ (1971) The Wangara experiment: boundary layer data. Technical paper no 19, CSIRO, Division of Meteorological Physics, Aspendale, 362 pp

    Google Scholar 

  • Clements CB (2010) Thermodynamic structure of a grass fire plume. Int J Wildland Fire 19:895–902

    Google Scholar 

  • Clements CB, Seto D (2015) Observations of fire-atmosphere interactions and near-surface heat transport on a slope. Bound-Layer Meteorol 154:409–426

    Google Scholar 

  • Clements CB, Zhong S, Goodrick S, Li J, Potter BE, Bian X, Heilman WE, Charney JJ, Perna R, Jang M, Lee D, Patel M, Street S, Aumann G (2007) Observing the dynamics of wildland grass fires. Bull Am Meteorol Soc 88:1369–1382

    Google Scholar 

  • Clements CB, Zhong S, Bian X, Heilman WE (2008) First observations of turbulence generated by grass fires. J Geophys Res 113:D22102. https://doi.org/10.1029/2008JD010014

    Article  Google Scholar 

  • Clements CB, Davis B, Seto D, Contezac J, Kochanski A, Fillipi J-B, Lareau N, Barboni B, Butler B, Krueger S, Ottmar R, Vihnanek R, Heilman WE, Flynn J, Jenkins MA, Mandel J, Teske C, Jimenez D, O’Brien J, Lefer B (2015) Overview of the 2013 FireFlux-II grass fire field experiment. In: Viegas DX (ed) Advances in forest fire research. Coimbra University Press, Coimbra, pp 392–400

    Google Scholar 

  • Clements CB, Lareau NP, Seto D, Contezac J, Davis B, Teske C, Zajkowski TJ, Hudak AT, Bright BC, Dickinson MB, Butler BW, Jimenez D, Hiers JK (2016) Fire weather conditions and fire-atmosphere interactions observed during low-intensity prescribed fires – RxCADRE 2012. Int J Wildland Fire 25:90–101

    Google Scholar 

  • Coen J, Mahalingam S, Daily J (2004) Infrared imagery of crown-fire dynamics during FROSTFIRE. J Appl Meteorol 43:1241–1259

    Google Scholar 

  • Coen JL, Cameron M, Michalakes J, Patton EG, Riggan PJ, Yedinak KM (2013) WRF-fire: coupled weather-wildland fire modeling with the weather research and forecasting model. J Appl Meteorol 52:16–38

    Google Scholar 

  • Counihan J (1975) Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos Environ 9:871–905

    Google Scholar 

  • Crosby JS (1949) Vertical wind currents and fire behavior. Fire Control Notes 10:12–15

    Google Scholar 

  • Cunningham P, Goodrick SL, Hussaini MY, Linn RR (2005) Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires. Int J Wildland Fire 14:61–75

    Google Scholar 

  • Deacon EL (1955) Gust variation with height up to 150 m. Q J R Meteorol Soc 81:562–573

    Google Scholar 

  • Dupuy J-L, Morvan D (2005) Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model. Int J Wildland Fire 14:141–151

    Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721

    Google Scholar 

  • Emori RI, Saito K (1982) Model experiment of a hazardous forest fire whirl. Fire Technol 18:319–327

    Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571

    MATH  Google Scholar 

  • Forthofer JM, Goodrick SL (2011) Review of vortices in wildland fire. J Combust 2011: Article ID 984363. https://doi.org/10.1155/2011/984363

  • Gifford F (1957) Relative atmospheric diffusion of smoke puffs. J Meteorol 14:410–414

    Google Scholar 

  • Goldie AHR (1925) Gustiness of wind in particular cases. Q J R Meteorol Soc 51:357–362

    Google Scholar 

  • Graham HE (1955) Fire whirlwinds. Bull Amer Meteorol Soc 36:99–103

    Google Scholar 

  • Haines DA (1982) Horizontal roll vortices and crown fires. J Appl Meteorol 21:751–763

    Google Scholar 

  • Haines DA (1988) A lower atmospheric severity index for wildland fires. Nat Weather Dig 13:23–27

    Google Scholar 

  • Haines DA, Smith MC (1983) Wind tunnel generation of horizontal roll vortices over a differentially heated surface. Nature 306:351–352

    Google Scholar 

  • Haines DA, Smith MC (1987) Three types of horizontal vortices observed in wildland mass and crown fires. J Clim Appl Meteorol 26:1624–1637

    Google Scholar 

  • Haines DA, Smith MC (1992) Simulation of the collapse of bent-over vortex pairs observed in wildland fires. For Sci 38:68–79

    Google Scholar 

  • Haugen DA, Kaimal JC, Bradley EF (1971) An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Q J R Meteorol Soc 97:168–180

    Google Scholar 

  • Heilman WE (1992) Atmospheric simulations of extreme surface heating episodes on simple hills. Int J Wildland Fire 2:99–114

    Google Scholar 

  • Heilman WE (1994) Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines. For Sci 40:601–617

    Google Scholar 

  • Heilman WE, Bian X (2010) Turbulent kinetic energy during wildfires in the north central and northeastern US. Int J Wildland Fire 19:346–363

    Google Scholar 

  • Heilman WE, Bian X (2013) Climatic variability of near-surface turbulent kinetic energy over the United States: implications for fire-weather predictions. J Appl Meteorol Climatol 52:753–771

    Google Scholar 

  • Heilman WE, Fast JD (1992) Simulations of horizontal roll vortex development above lines of extreme surface heating. Int J Wildland Fire 2:55–68

    Google Scholar 

  • Heilman WE, Zhong S, Hom JL, Charney JJ, Kiefer MT, Clark KL, Skowronski N, Bohrer G, Lu W, Liu Y, Kremens R, Bian X, Gallagher M, Patterson M, Nikolic J, Chatziefstratiou T, Stegall C, Forbus K (2013) Development of modeling tools for predicting smoke dispersion from low-intensity fires. Final Report, U.S. Joint Fire Science Program, Project 09-1-04-1. Available: http://www.firescience.gov/projects/09-1-04-1/project/09-1-04-1_final_report.pdf

  • Heilman WE, Liu Y, Urbanski S, Kovalev V, Mickler R (2014) Wildland fire emissions, carbon, and climate: plume rise, atmospheric transport, and chemistry processes. For Ecol Manage 317:70–79

    Google Scholar 

  • Heilman WE, Clements CB, Seto D, Bian X, Clark KL, Skowronski NS, Hom JL (2015) Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: implications for smoke dispersion. Atmos Sci Lett 16:453–460

    Google Scholar 

  • Heilman WE, Bian X, Clark KL, Skowronski NS, Hom JL, Gallagher MR (2017) Atmospheric turbulence observations in the vicinity of surface fires in forested environments. J Appl Meteorol Clim 56:3133–3150

    Google Scholar 

  • Hess GD, Hicks BB, Yamada T (1981) The impact of the Wangara experiment. Bound-Layer Meteorol 20:135–174

    Google Scholar 

  • Hicks BB (1976) Wind-profile relationships from the ‘Wangara’ experiment. Q J R Meteorol Soc 102:535–551

    Google Scholar 

  • Hoffman CM, Linn R, Parsons R, Sieg C, Winterkamp J (2015) Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest. Agric For Meteorol 204:79–93

    Google Scholar 

  • Jenkins MA, Clark TL, Coen J (2001) Coupling atmospheric and fire models. In: Johnson EA, Miyanishi K (eds) Forest fires. Behavior and ecological effects. Academic, San Diego, pp 257–302

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Q J R Meteorol Soc 98:563–589

    Google Scholar 

  • Kiefer MT, Zhong S, Heilman WE, Charney JJ, Bian X (2013) Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. J Geophys Res - Atmos 118:6175–6188

    Google Scholar 

  • Kiefer MT, Heilman WE, Zhong S, Charney JJ, Bian X, Skowronski NS, Hom JL, Clark KL, Patterson M, Gallagher MR (2014) Multiscale simulation of a prescribed fire event in the New Jersey pine barrens using ARPS-CANOPY. J Appl Meteorol Climatol 53:793–812

    Google Scholar 

  • Kiefer MT, Heilman WE, Zhong S, Charney JJ, Bian X (2015) Mean and turbulent flow downstream of a low-intensity fire: influence of canopy and background atmospheric conditions. J Appl Meteorol Climatol 54:42–57

    Google Scholar 

  • Kiefer MT, Heilman WE, Zhong S, Charney JJ, Bian X (2016) A study of the influence of forest gaps on fire-atmosphere interactions. Atmos Chem Phys 16:8499–8509

    Google Scholar 

  • Kiefer MT, Zhong S, Heilman WE, Charney JJ, Bian X (2018) A numerical study of atmospheric perturbations induced by heat from a wildland fire: sensitivity to vertical canopy structure and heat source strength. J Geophys Res - Atmos 123:2555–2572

    Google Scholar 

  • Kolmogorov N (1941) The local structure of turbulence in incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299

    Google Scholar 

  • Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildland Fire 19:818–843

    Google Scholar 

  • Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildland Fire 21:396–417

    Google Scholar 

  • Linn R, Reisner J, Colman JJ, Winterkamp J (2002) Studying wildfire behavior using FIRETEC. Int J Wildland Fire 11:233–246

    Google Scholar 

  • Liu Y, Goodrick S, Achtemeier G, Jackson WA, Qu JJ, Wang W (2009) Smoke incursions into urban areas: simulation of a Georgia prescribed burn. Int J Wildland Fire 18:336–348

    Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience, New York, 239 pp

    Google Scholar 

  • McRae DJ, Flannigan MD (1990) Development of large vortices on prescribed fires. Can J For Res 20:1878–1887

    Google Scholar 

  • Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland Fire 16:1–22

    Google Scholar 

  • Mesinger F, DeMego G, Kalnay E, Mitchell K, Shafran PC, Ebusuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360

    Google Scholar 

  • Meyers TP, Baldocchi DD (1991) The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric For Meteorol 53:207–222

    Google Scholar 

  • Morvan D, Dupuy JL (2004) Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust Flame 138:199–210

    Google Scholar 

  • Mueller E, Mell W, Simeoni A (2014) Large eddy simulation of forest canopy flow for wildland fire modeling. Can J For Res 44:1534–1544

    Google Scholar 

  • Noble IR, Bary GAV, Gill AM (1980) McArthur’s fire-danger meters expressed as equations. Aust J Ecol 5:201–203

    Google Scholar 

  • Ottmar RD, Hiers JK, Butler BW, Clements CB, Dickinson MB, Hudak AT, O’Brien JJ, Potter BE, Rowell EM, Strand TM, Zajkowski TJ (2016) Measurements, datasets and preliminary results from the RxCADRE project – 2008, 2011 and 2012. Int J Wildland Fire 25:1–9

    Google Scholar 

  • Panofsky HA, McCormick RA (1954) Properties of the spectrum of atmospheric turbulence at 100 m. Q J R Meteorol Soc 80:557–558

    Google Scholar 

  • Pimont F, Dupuy J-L, Linn RR, Dupont S (2009) Validation of FIRETEC wind-flows over a canopy and a fuel break. Int J Wildland Fire 18:775–790

    Google Scholar 

  • Pimont F, Dupuy J-L, Linn RR, Dupont S (2011) Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann For Sci 68:523–530

    Google Scholar 

  • Radke LF, Clark TL, Coen JL, Walther CA, Lockwood RN, Riggan PJ, Brass JA, Higgins RG (2000) The wildfire experiment (WiFE): observations with airborne remote sensors. Can J Remote Sens 26:406–417

    Google Scholar 

  • Raupach MR (1990) Similarity analysis of the interaction of bushfire plumes with ambient winds. Math Comput Model 13:113–121

    Google Scholar 

  • Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13:97–129

    MATH  Google Scholar 

  • Rawson HER (1913) Atmospheric waves, eddies and vortices. Aeronaut J 17:245–256

    Google Scholar 

  • Reisner JM, Wynne S, Margolin L, Linn RR (2000) Coupled atmospheric–fire modeling employing the method of averages. Mon Weather Rev 128:3683–3691

    Google Scholar 

  • Richarson LF (1920) The supply of energy to and from atmospheric eddies. Proc R Soc A: Math Phys Eng Sci 97:354–373

    Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990

    Google Scholar 

  • Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research paper INT-115, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden

    Google Scholar 

  • Seto D, Clements CB (2011) Fire whirl evolution observed during a valley wind-sea breeze reversal. J Combust 2011: Article ID 569475. https://doi.org/10.1155/2011/569475

  • Seto D, Clements CB, Heilman WE (2013) Turbulence spectra measured during fire front passage. Agric For Meteorol 169:195–210

    Google Scholar 

  • Seto D, Strand TM, Clements CB, Thistle H, Mickler R (2014) Wind and plume thermodynamic structures during low-intensity subcanopy fires. Agric For Meteorol 198-199:53–61

    Google Scholar 

  • Sharples JJ, McRae RHD, Wilkes SR (2012) Wind-terrain effects on the propagation of wildfires in rugged terrain: fire channelling. Int J Wildland Fire 21:282–296

    Google Scholar 

  • Shaw WN (1914) Wind gusts and the structure of aerial disturbances. Aeronaut J 18:172–203

    Google Scholar 

  • Shaw RH, Silversides RH, Thurtell GW (1974) Some observations of turbulence and turbulent transport within and above plant canopies. Bound-Layer Meteorol 5:429–449

    Google Scholar 

  • Shaw RH, Hartog GD, Neumann HH (1988) Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Bound-Layer Meteorol 45:391–409

    Google Scholar 

  • Simpson CC, Sharples JJ, Evans JP, McCabe MF (2013) Large eddy simulation of atypical wildland fire spread on leeward slopes. Int J Wildland Fire 22:599–614

    Google Scholar 

  • Simpson CC, Sharples JJ, Evans JP (2016) Sensitivity of atypical lateral fire spread to wind and slope. Geophys Res Lett 43:1744–1751

    Google Scholar 

  • Skamarock, WC, Klemp, JB, Dudhia, J, Gill, DO, Barker, DM, Wang, W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR Technical Note NCAR/TN–468+STR. National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Strand TM, Rorig M, Yedinak K, Seto D, Allwine E, Garcia FA, O’Keefe, P, Checan VC, Mickler R, Clements C, Lamb B (2013) Sub-canopy transport and dispersion of smoke: a unique observation dataset and model evaluation. Final report, U.S. Joint Fire Science Program, Project 09-1-04-2. Available: http://www.firescience.gov/projects/09-1-04-2/project/09-1-04-2_final_report.pdf

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models. Int J Wildland Fire 18:349–368

    Google Scholar 

  • Sun R, Krueger SK, Jenkins MA, Zulauf MA, Charney JJ (2009) The importance of fire-atmosphere coupling and boundary-layer turbulence to wildfire spread. Int J Wildland Fire 18:50–60

    Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond Ser A Math Phys Sci 164:476–490

    MATH  Google Scholar 

  • Vickers D, Thomas CK (2013) Some aspects of the turbulence kinetic energy and fluxes above and beneath a tall open pine forest canopy. Agric For Meteorol 181:143–151

    Google Scholar 

  • Wilson NR, Shaw RH (1977) A higher-order closure model for canopy flow. J Appl Meteorol 16:1197–1205

    Google Scholar 

  • Wyngaard JC (1992) Atmospheric turbulence. Annu Rev Fluid Mech 24:205–233

    MATH  Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201

    Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2000) The advanced regional prediction system (ARPS) – a multi-scale nonhydrostatic atmosphere simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75:463–485

    Google Scholar 

  • Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Y, Wang D (2001) The advanced regional prediction system (ARPS) – a multi-scale nonhydrostatic atmosphere simulation and prediction tool. Part II: model physics and applications. Meteorol Atmos Phys 76:143–165

    Google Scholar 

  • Zulauf MA (2001) Modeling the effects of boundary layer circulations generated by cumulus convection and leads on large-scale surface fluxes. PhD dissertation, University of Utah

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren E. Heilman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Heilman, W.E., Clements, C.B., Zhong, S., Clark, K.L., Bian, X. (2020). Atmospheric Turbulence. In: Manzello, S.L. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-52090-2_137

Download citation

Publish with us

Policies and ethics