Fatty Acids as Mediators of Intercellular Signaling

  • Manuel Espinosa-Urgel
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Mechanisms of intercellular communication as a function of population density exist in many bacteria. These signaling circuits are based on the release of diffusible molecules to the extracellular medium and their detection and subsequent alteration of global gene expression above certain concentration thresholds. Fatty acids are structural parts of different signal molecules, such as acyl homoserine lactones, where the length and modifications of the acyl side chains play a role as determinants of signal specificity. Yet, fatty acids and fatty acid derivatives are increasingly being reported as intra- and interspecies cell-cell communication signals and also mediate interactions of bacteria with other organisms. These signals appear to be particularly relevant in plant-associated bacteria, but are also present in other microorganisms, and could offer a chance to develop new strategies to combat pathogens.



Work in the author’s group on cellular responses and regulatory mechanisms in bacterial populations and biofilms is funded by grant BFU2013-43469-P from Plan Estatal de I+D+I and EFDR funds.


  1. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albuquerque P, Casadevall A (2012) Quorum sensing in fungi-a review. Med Mycol 50:337–345CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bassler BL, Losick R(2006) Bacterially speaking. Cell 125:237–246.Google Scholar
  4. Boon C, Deng Y, Wang LH, He Y, JL X, Fan Y, Pan SQ, Zhang LH (2008) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36CrossRefPubMedGoogle Scholar
  5. Camara M, Williams P, Hardman A (2002) Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2:667–676CrossRefPubMedGoogle Scholar
  6. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant-Microbe Interact 11:1119–1129CrossRefPubMedGoogle Scholar
  7. Chatterjee S, Wistrom C, Lindow SE (2008) A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci USA 105:2670–2675CrossRefPubMedPubMedCentralGoogle Scholar
  8. Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T (2016) Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 9(409):ra1CrossRefPubMedGoogle Scholar
  9. Cugini C, Morales DK, Hogan DA (2010) Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology 156:3096–3107CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cullinane M, Baysse C, Morrissey JP, O’Gara F (2005) Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas fluorescens. Microbiology 151:3071–3080CrossRefPubMedGoogle Scholar
  11. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289CrossRefPubMedGoogle Scholar
  12. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036CrossRefPubMedPubMedCentralGoogle Scholar
  13. Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403CrossRefPubMedGoogle Scholar
  14. Deng Y, Wu J, Eberl L, Zhang LH (2010) Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol 76:4675–4683CrossRefPubMedPubMedCentralGoogle Scholar
  15. Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344CrossRefPubMedPubMedCentralGoogle Scholar
  16. Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Cámara M, Williams P (2006) Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710CrossRefPubMedGoogle Scholar
  17. Diggle SP, Griffin AS, Campbell GS, West SA (2007a) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414CrossRefPubMedGoogle Scholar
  18. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P (2007b) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96CrossRefPubMedGoogle Scholar
  19. Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135CrossRefGoogle Scholar
  20. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449CrossRefPubMedGoogle Scholar
  21. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781CrossRefPubMedGoogle Scholar
  22. Farrow JM 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fernández-Piñar R, Cámara M, Dubern JF, Ramos JL, Espinosa-Urgel M (2011) The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT 2440. Res Microbiol 162:773–781CrossRefPubMedGoogle Scholar
  24. Fernández-Piñar R, Espinosa-Urgel M, Dubern JF, Heeb S, Ramos JL, Cámara M (2012) Fatty acid-mediated signalling between two Pseudomonas species. Environ Microbiol Rep 4:417–423CrossRefPubMedGoogle Scholar
  25. Fouhy Y, Scanlon K, Schouest K, Spillane C, Crossman L, Avison MB, Ryan RP, Dow JM (2007) Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol 189:4964–4968CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signaling. Nat Rev Mol Cell Biol 3:685–695CrossRefPubMedGoogle Scholar
  27. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–334.CrossRefPubMedGoogle Scholar
  30. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ham JH (2013) Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. Mol Plant Pathol 14:308–322CrossRefPubMedGoogle Scholar
  32. Hays E, Wells E, Katzman I, Cain C, Jacobs CK, Thayer FA, Doisy SA, Gaby EA, Roberts WL, Muir EC, Carroll RD, Jones CJ, Wade NJ (1945) Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem 159:725–750Google Scholar
  33. He YW, Zhang LH (2008) Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32:842–857CrossRefPubMedGoogle Scholar
  34. He YW, Wu J, Cha JS, Zhang LH (2010) Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10:187CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239CrossRefPubMedGoogle Scholar
  36. Krol E, Becker A (2014) Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. Proc Natl Acad Sci USA 111:10702–10707CrossRefPubMedPubMedCentralGoogle Scholar
  37. Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480CrossRefPubMedGoogle Scholar
  38. Lazazzera BA (2001) The intracellular function of extracellular signaling peptides. Peptides 22:1519–1527CrossRefPubMedGoogle Scholar
  39. Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT, Ionescu M (2014) Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce’s disease. Mol Plant-Microbe Interact 27:244–254CrossRefPubMedGoogle Scholar
  40. Marques CN, Morozov A, Planzos P, Zelaya HM (2014) The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 80:6976–6991CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marques CN, Davies DG, Sauer K (2015) Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8:816–835CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199CrossRefPubMedGoogle Scholar
  43. Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P (2001) The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol 183:3537–3547CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518PubMedPubMedCentralGoogle Scholar
  45. Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12:192–198CrossRefPubMedPubMedCentralGoogle Scholar
  46. Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 96:4360–4365CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210PubMedPubMedCentralGoogle Scholar
  48. Qazi SN, Counil E, Morrissey J, Rees CE, Cockayne A, Winzer K, Chan WC, Williams P, Hill PJ (2001) agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect Immun 69:7074–7082CrossRefPubMedPubMedCentralGoogle Scholar
  49. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370CrossRefPubMedGoogle Scholar
  50. Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187:3477–3485CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rumbaugh KP, Griswold JA, Hamood AN (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2:1721–1731CrossRefPubMedGoogle Scholar
  52. Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA (2009) Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19:341–345CrossRefPubMedGoogle Scholar
  53. Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow JM (2008) Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 68:75–86CrossRefPubMedGoogle Scholar
  54. Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM (2015) The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11(7):e1004986CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599CrossRefPubMedGoogle Scholar
  56. Singh A, Del Poeta M (2011) Lipid signalling in pathogenic fungi. Cell Microbiol 13:177–185CrossRefPubMedGoogle Scholar
  57. Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725CrossRefPubMedGoogle Scholar
  58. Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci USA 91:12619–12623CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tao F, He YW, DH W, Swarup S, Zhang LH (2010) The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192:1020–1029CrossRefPubMedGoogle Scholar
  60. Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37CrossRefPubMedGoogle Scholar
  61. Vílchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Wagner-Döbler I, Sztajer H (2010) Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chembiochem 11:1552–1162CrossRefPubMedGoogle Scholar
  62. Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482CrossRefPubMedGoogle Scholar
  63. Wang LH, He Y, Gao Y, JE W, Dong YH, He C, Wang SX, Weng LX, JL X, Tay L, Fang RX, Zhang LH (2004) A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912CrossRefPubMedGoogle Scholar
  64. Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G, Liu H, Ma LZ (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80:6724–6732CrossRefPubMedPubMedCentralGoogle Scholar
  65. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404CrossRefPubMedGoogle Scholar
  66. Williams P (2007) Quorum sensing, communication and cross-kingdom signaling in the bacterial world. Microbiology 153:3923–3938CrossRefPubMedGoogle Scholar
  67. Winzer K, Williams P (2001) Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol 291:131–143CrossRefPubMedGoogle Scholar
  68. Yu S, Jensen V, Seeliger J, Feldmann I, Weber S, Schleicher E, Häussler S, Blankenfeldt W (2009) Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48:10298–10307CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations