Advertisement

One-Component Systems that Regulate the Expression of Degradation Pathways for Aromatic Compounds

  • G. Durante-Rodríguez
  • H. Gómez-Álvarez
  • J. Nogales
  • M. Carmona
  • E. Díaz
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The expression of pathways for the catabolism of aromatic compounds is energetically expensive, and aromatic compounds are generally toxic even to bacteria that can use them as growth substrates. Hence, complex regulatory circuits that control the expression of the degradation pathways have evolved. Transcriptional regulation appears to be the most common mechanism for control of gene expression. Effector-specific transcriptional regulation of aromatic catabolic pathways depends on the performance of a specific regulator acting on a specific promoter and responding to a specific effector signal. One-component regulatory systems combine within the same cytosolic protein the effector-binding input domain and a DNA-binding output domain. A great variety of one-component regulatory systems can be classified within different families of prokaryotic transcriptional regulators revealing a wide diversity in their evolutionary origins and showing that a regulatory issue, i.e., having an operon induced in the presence of a given aromatic compound, can be solved through different types of regulators and mechanisms of transcriptional control in different bacteria. The effector-specific regulation can be tightly fine-tuned by the action of certain modulators and is, in turn, under control of overimposed mechanisms that connect the metabolic and energetic status of the cell to the activity of the individual catabolic clusters, leading to complex regulatory networks. Elucidating such regulatory networks will pave the way for a better understanding of the regulatory intricacies that control microbial biodegradation of aromatic compounds, which are key issues that should be taken into account for the rational design of more efficient recombinant biodegraders, bacterial biosensors, and biocatalysts for modern green chemistry.

Notes

Acknowledgments

Work in E. Díaz laboratory was supported by Ministry of Economy and Competitiveness of Spain Grant BIO2012-39501, BIO2016-79736-R and PCIN2014-113, European Union FP7 Grant 311815, and Fundación Ramón-Areces XVII CN.

References

  1. Agari Y, Kuramitsu S, Shinkai A (2010) Identification of novel genes regulated by the oxidative stress-responsive transcriptional activator SdrP in Thermus thermophilus HB8. FEMS Microbiol Lett 313:127–134PubMedCrossRefGoogle Scholar
  2. Agari Y, Sakamoto K, Kuramitsu S, Shinkai A (2012) Transcriptional repression mediated by a TetR family protein, PfmR, from Thermus thermophilus HB8. J Bacteriol 194:4630–4641PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arai H, Chang MY, Kudo T, Ohishi T (2000) Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146:1707–1715PubMedCrossRefGoogle Scholar
  4. Arai H, Kudo T, Yamamoto T, Ohishi T, Shimizu T, Nakata T (1999) Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology 145:2813–2820PubMedCrossRefGoogle Scholar
  5. Arenghi FL, Pinti M, Galli E, Barbieri P (1999) Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl Environ Microbiol 65:4057–4063PubMedPubMedCentralGoogle Scholar
  6. Arias-Barrau E, Olivera ERR, Luengo JMM, Fernández C, Galán B, García JL, Díaz E, Miñambres B (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186:5062–5077PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barragán MJL, Blázquez B, Zamarro MT, Mancheño JM, Jl G, Díaz E, Carmona M (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 280:10683–10694PubMedCrossRefGoogle Scholar
  8. Beck LL, Smith TG, Hoover TR (2007) Look, no hands! Unconventional transcriptional activators in bacteria. Trends Microbiol 15:530–537PubMedCrossRefGoogle Scholar
  9. Bleichrodt FS, Fischer R, Gerischer UC (2010) The beta-ketoadipate pathway of Acinetobacter baylyi undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc. Microbiology 156:1313–1322PubMedCrossRefGoogle Scholar
  10. Breinig S, Schiltz E, Fuchs G (2000) Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. J Bacteriol 182:5849–5863PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brzostowicz PC, Reams AB, Clark TJ, Neidle EL (2003) Transcriptional cross-regulation of the catechol and protocatechuate branches of the β-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene. Appl Environ Microbiol 69:1598–1606PubMedPubMedCentralCrossRefGoogle Scholar
  12. Busby S, Ebright RH (1999) Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213PubMedCrossRefGoogle Scholar
  13. Bush M, Dixon R (2012) The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 76:497–529PubMedPubMedCentralCrossRefGoogle Scholar
  14. Büsing I, Kant M, Dörries M, Wöhlbrand L, Rabus R (2015) The predicted σ54-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in “Aromatoleum aromaticum” EbN1. BMC Microbiol 15:251PubMedPubMedCentralCrossRefGoogle Scholar
  15. Byrne AM, Olsen RH (1996) Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. J Bacteriol 178:6327–6337PubMedPubMedCentralCrossRefGoogle Scholar
  16. Calisti C, Ficca AG, Barghini P, Ruzzi M (2008) Regulation of ferulic catabolic genes in Pseudomonas fluorescens BF13: involvement of a MarR family regulator. Appl Microbiol Biotechnol 80:475–483PubMedCrossRefGoogle Scholar
  17. Calles B, de Lorenzo V (2013) Expanding the boolean logic of the prokaryotic transcription factor XylR by functionalization of permissive sites with a protease-target sequence. ACS Synth Biol 2:594–603PubMedCrossRefGoogle Scholar
  18. Carl B, Fetzner S (2005) Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS. Appl Environ Microbiol 71:8618–8626PubMedPubMedCentralCrossRefGoogle Scholar
  19. Carmona M, Prieto MA, Galán B, García JL, Díaz E (2008) Signaling networks and design of pollutants biosensors. In: Díaz E (ed) Microbial Biodegradation: genomics and molecular biology. Caister Academic Press, Norfolk, pp 97–143Google Scholar
  20. Cases I, de Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3:105–118PubMedCrossRefGoogle Scholar
  21. Chao H, Zhou N (2014) Involvement of the global regulator GlxR in 3-hydroxybenzoate and gentisate utilization by Corynebacterium glutamicum. Appl Environ Microbiol 80:4215–4225PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chao H, Zhou N (2013) GenR, an IclR-type regulator, activates and represses the transcription of genes involved in 3-hydroxybenzoate and gentisate catabolism in Corynebacterium glutamicum. J Bacteriol 195:1598–1609PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen DW, Zhang Y, Jiang CY, Liu SJ (2014) Benzoate metabolism intermediate benzoyl-coenzyme a affects gentisate pathway regulation in Comamonas testosteroni. Appl Environ Microbiol 80:4051–4062PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen X, Kohl TA, Ruckert C, Rodionov DA, Li LH, Ding JY, Kalinowski J, Liu SJ (2012) Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum. Appl Environ Microbiol 78:5796–5804PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cheng M, Chen K, Guo S, Huang X, He J, Li SJJ (2015) PbaR, an IclR family transcriptional activator for the regulation of the 3-phenoxybenzoate 1′,2′-dioxygenase gene cluster in Sphingobium wenxiniae JZ-1T. Appl Environ Microbiol 81:8094–8092Google Scholar
  26. Choi KY, Kang BS, Nam MH, Sul WJ, Kim E (2015) Functional identification of OphR, an IclR family transcriptional regulator involved in the regulation of the phthalate catabolic operon in Rhodococcus sp. strain DK17. Indian J Microbiol 55:313–318PubMedPubMedCentralCrossRefGoogle Scholar
  27. Collier LS, Gaines GL, Neidle EL (1998) Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol 180:2493–2501PubMedPubMedCentralGoogle Scholar
  28. Cowles CE, Nichols NN, Harwood CS (2000) BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 182:6339–6346PubMedPubMedCentralCrossRefGoogle Scholar
  29. Davis JR, Brown BL, Page R, Sello JK (2013) Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors. Nucleic Acids Res 41:3888–3900PubMedPubMedCentralCrossRefGoogle Scholar
  30. de las Heras A, Chavarría M, de Lorenzo V (2011) Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2,4-dinitrotoluene biodegradation. Mol Microbiol 82:287–299CrossRefGoogle Scholar
  31. de las Heras A, de Lorenzo V (2011) Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Mol Microbiol 79:1248–1259CrossRefGoogle Scholar
  32. del Peso-Santos T, Shingler V (2016) Inter-sigmulon communication through topological promoter coupling. Nucleic Acids Res 44:9638–9649Google Scholar
  33. del Peso-Santos T, Bartolome-Martín D, Fernández C, Alonso S, García JL, Díaz E, Shingler V, Perera J (2006) Coregulation by phenylacetyl-coenzyme a-responsive PaaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2. J Bacteriol 188:4812–4821PubMedPubMedCentralCrossRefGoogle Scholar
  34. del Peso-Santos T, Bernardo LMD, Skarfstad E, Holmfeldt L, Togneri P, Shingler V (2011) A hyper-mutant of the unusual σ70-Pr promoter bypasses synergistic ppGpp/DksA co-stimulation. Nucleic Acids Res 39:5853–5865PubMedPubMedCentralCrossRefGoogle Scholar
  35. Díaz E, Ferrández A, García JL (1998) Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J Bacteriol 180:2915–2923PubMedPubMedCentralGoogle Scholar
  36. Díaz E, Jiménez JI, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 24:431–442PubMedCrossRefGoogle Scholar
  37. Dıaz E, Prieto MA (2000) Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotechnol 11:467–475PubMedCrossRefGoogle Scholar
  38. Díaz E, Ferrández A, Prieto MA, García JL (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65:523–569Google Scholar
  39. DiMarco AA, Ornston LN (1994) Regulation of p-hydroxybenzoate hydroxylase synthesis by PobR bound to an operator in Acinetobacter calcoaceticus. J Bacteriol 176:4277–4284PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dispensa M, Thomas CT, Kim MK, Perrotta JA, Gibson J, Harwood CS (1992) Anaerobic growth of Rhodopseudomonas palustris on 4-hydroxybenzoate is dependent on AadR, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol 174:5803–5813PubMedPubMedCentralCrossRefGoogle Scholar
  41. Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991PubMedCrossRefGoogle Scholar
  42. Domínguez-Cuevas P, Marín P, Busby S, Ramos JL, Marqués S (2008) Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 190:3118–3128PubMedPubMedCentralCrossRefGoogle Scholar
  43. Domínguez-Cuevas P, Ramos JL, Marqués S (2010) Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. J Bacteriol 192:2682–2690PubMedPubMedCentralCrossRefGoogle Scholar
  44. Donoso RA, Pérez-Pantoja D, González B (2011) Strict and direct transcriptional repression of the pobA gene by benzoate avoids 4-hydroxybenzoate degradation in the pollutant degrader bacterium Cupriavidus necator JMP134. Environ Microbiol 13:1590–1600PubMedCrossRefGoogle Scholar
  45. Durante-Rodríguez G, Mancheño JM, Díaz E, Carmona M (2016) Refactoring the λ phage lytic/lysogenic decision with a synthetic regulator. Microbiol Open 5:575–581CrossRefGoogle Scholar
  46. Durante-Rodríguez G, Mancheño JM, Rivas G, Alfonso C, García JL, Díaz E, Carmona M (2013) Identification of a missing link in the evolution of an enzyme into a transcriptional regulator. PLoS One 8:e57518PubMedPubMedCentralCrossRefGoogle Scholar
  47. Durante-Rodríguez G, Valderrama JA, Mancheño JM, Rivas G, Alfonso C, Arias-Palomo E, Llorca O, García JL, Díaz E, Carmona M (2010) Biochemical characterization of the transcriptional regulator BzdR from Azoarcus sp. CIB J Biol Chem 285:35694–35705PubMedCrossRefGoogle Scholar
  48. Durante-Rodríguez G, Zamarro MT, García JL, Díaz E, Carmona M (2006) Oxygen-dependent regulation of the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus sp. strain CIB. J Bacteriol 188:2343–2354PubMedPubMedCentralCrossRefGoogle Scholar
  49. Eaton RW (1997) p-cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179:3171–3180PubMedPubMedCentralCrossRefGoogle Scholar
  50. Egland PG, Harwood CS (2000) HbaR, a 4-hydroxybenzoate sensor and FNR-CRP superfamily member, regulates anaerobic 4-hydroxybenzoate degradation by Rhodopseudomonas palustris. J Bacteriol 182:100–106PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ezezika OC, Haddad S, Clark TJ, Neidle EL, Momany C (2007) Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. J Mol Biol 367:616–629PubMedCrossRefGoogle Scholar
  52. Fernández C, Díaz E, García JL (2013) Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli. Environ Microbiol Rep 6:239–250PubMedCrossRefGoogle Scholar
  53. Ferrández A, García JL, Díaz E (2000) Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli. J Biol Chem 275:12214–12222PubMedCrossRefGoogle Scholar
  54. Fujihara H, Yoshida H, Matsunaga T, Goto M, Furukawa K (2006) Cross-regulation of biphenyl- and salicylate-catabolic genes by two regulatory systems in Pseudomonas pseudoalcaligenes KF707. J Bacteriol 188:4690–4697PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fukuhara Y, Inakazu K, Kodama N, Kamimura N, Kasai D, Katayama Y, Fukuda M, Masai E (2009) Characterization of the isophthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 76:519–527PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gabor K, Hailesellasse Sene K, Smidt H, de Vos WM, van der Oost J (2008) Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression. Microbiology 154:3686–3696PubMedCrossRefGoogle Scholar
  57. Galán B, García JL, Prieto MA (2004) The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W. J Bacteriol 186:2215–2220PubMedPubMedCentralCrossRefGoogle Scholar
  58. Galán B, Kolb A, Sanz J, García JL, Prieto MA (2003) Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res 31:6598–6609PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gallegos MT, Michán C, Ramos JL (1993) The XylS/AraC family of regulators. Nucleic Acids Res 21:807–810PubMedPubMedCentralCrossRefGoogle Scholar
  60. Galvão TC, de Lorenzo V (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17:34–42PubMedCrossRefGoogle Scholar
  61. García B, Olivera ER, Minambres B, Carnicero D, Muniz C, Naharro G, Luengo JM (2000) Phenylacetyl-coenzyme a is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U. Appl Environ Microbiol 66:4575–4578PubMedPubMedCentralCrossRefGoogle Scholar
  62. García LL, Rivas-Marín E, Floriano B, Bernhardt R, Ewen KM, Reyes-Ramírez F, Santero E (2011) ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression. J Biol Chem 286:1709–1718PubMedCrossRefGoogle Scholar
  63. Garmendia J, de las Heras A, Galvão TC, de Lorenzo V (2008) Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 1:236–246PubMedPubMedCentralCrossRefGoogle Scholar
  64. Garmendia J, de Lorenzo V (2000) The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Mol Microbiol 38:401–410PubMedCrossRefGoogle Scholar
  65. Gerischer U, Segura A, Ornston LN (1998) PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. J Bacteriol 180:1512–1524PubMedPubMedCentralGoogle Scholar
  66. Grove A (2013) MarR family transcription factors. Curr Biol 23:R142–R143PubMedCrossRefGoogle Scholar
  67. Guantes R, Benedetti I, Silva-Rocha R, de Lorenzo V (2015) Transcription factor levels enable metabolic diversification of single cells of environmental bacteria. ISME J 10:1122–1133PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gulvik CA, Buchan A (2013) Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage. Appl Environ Microbiol 79:3716–3723PubMedPubMedCentralCrossRefGoogle Scholar
  69. Guo Z, Houghton JE (1999) PcaR-mediated activation and repression of pca genes from Pseudomonas putida are propagated by its binding to both the −35 and the −10 promoter elements. Mol Microbiol 32:253–263PubMedCrossRefGoogle Scholar
  70. Gupta S, Saxena M, Saini N, Mahmooduzzafar KR, Kumar A (2012) An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein. PLoS One 7:e43527PubMedPubMedCentralCrossRefGoogle Scholar
  71. Herrera MC, Duque E, Rodríguez-Herva JJ, Fernández-Escamilla AM, Ramos JL (2010) Identification and characterization of the PhhR regulon in Pseudomonas putida. Environ Microbiol 12(6):1427–1438PubMedGoogle Scholar
  72. Hirakawa H, Hirakawa Y, Greenberg EP, Harwood CS (2015) BadR and BadM proteins transcriptionally regulate two operons needed for anaerobic benzoate degradation by Rhodopseudomonas palustris. Appl Environ Microbiol 81:4253–4262PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hirakawa H, Schaefer AL, Greenberg EP, Harwood CS (2012) Anaerobic p-coumarate degradation by Rhodopseudomonas palustris and identification of CouR, a MarR repressor protein that binds p-coumaroyl coenzyme A. J Bacteriol 194:1960–1967PubMedPubMedCentralCrossRefGoogle Scholar
  74. Horbal L, Fedorenko V, Luzhetskyy A (2014) Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 98:8641–8655PubMedCrossRefGoogle Scholar
  75. Hoskisson PA, Rigali S (2009) Chapter 1: Variation in Form and Function: the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol 69:1–22PubMedCrossRefGoogle Scholar
  76. Jain D, Nair DT (2012) Spacing between core recognition motifs determines relative orientation of AraR monomers on bipartite operators. Nucleic Acids Res 41:639–647PubMedPubMedCentralCrossRefGoogle Scholar
  77. Jiménez JI, Juárez JF, García JL, Díaz E (2011) A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida. Environ Microbiol 13:1718–1732PubMedCrossRefGoogle Scholar
  78. Jõesaar M, Heinaru E, Viggor S, Vedler E, Heinaru A (2010) Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol Ecol 72:464–475PubMedCrossRefGoogle Scholar
  79. Jones RM, Pagmantidis V, Williams PA (2000) sal genes determining the catabolism of salicylate esters are part of a supraoperonic cluster of catabolic genes in Acinetobacter sp. strain ADP1. J Bacteriol 182:2018–2025PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jones RM, Williams PA (2001) areCBA is an operon in Acinetobacter sp. strain ADP1 and is controlled by AreR, a σ54-dependent regulator. J Bacteriol 183:405–409PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jourlin-Castelli C, Mani N, Nakano MM, Sonenshein AL (2000) CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol 295:865–878PubMedCrossRefGoogle Scholar
  82. Juárez JF, Liu H, Zamarro MT, McMahon S, Liu H, Naismith JH, Eberlein C, Boll M, Carmona M, Díaz E (2015) Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. J Biol Chem 290:12165–12183PubMedPubMedCentralCrossRefGoogle Scholar
  83. Juárez JF, Zamarro MT, Eberlein C, Boll M, Carmona M, Díaz E (2012) Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Environ Microbiol 15:148–166PubMedCrossRefGoogle Scholar
  84. Kamimura N, Takamura K, Hara H, Kasai D, Natsume R, Senda T, Katayama Y, Fukuda M, Masai E (2010) Regulatory system of the protocatechuate 4,5-cleavage pathway genes essential for lignin downstream catabolism. J Bacteriol 192:3394–3405PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kasai D, Araki N, Motoi K, Yoshikawa S, Iino T, Imai S, Masai E, Fukuda M (2015) γ-resorcylate catabolic-pathway genes in the soil Actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 81:7656–7665PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kasai D, Kamimura N, Tani K, Umeda S, Abe T, Fukuda M, Masai E (2012) Characterization of FerC, a MarR-type transcriptional regulator, involved in transcriptional regulation of the ferulate catabolic operon in Sphingobium sp. strain SYK-6. FEMS Microbiol Lett 332:68–75PubMedCrossRefGoogle Scholar
  87. Kasai D, Kitajima M, Fukuda M, Masai E (2010) Transcriptional regulation of the terephthalate catabolism operon in Comamonas sp. strain E6. Appl Environ Microbiol 76:6047–6055PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kim HS, Kang TS, Hyun JS, Kang HS (2004) Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP- receptor protein complex. J Biol Chem 279:33253–33262PubMedCrossRefGoogle Scholar
  89. Kim MN, Park HH, Lim WK, Shin HJ (2005) Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Methods 60:235–245PubMedCrossRefGoogle Scholar
  90. Kim SI, Jourlin-Castelli C, Wellington SR, Sonenshein AL (2003) Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. J Mol Biol 334:609–624PubMedCrossRefGoogle Scholar
  91. Kim Y, Joachimiak G, Bigelow L, Babnigg G, Joachimiak A (2016) How aromatic compounds block DNA binding of HcaR catabolite regulator. J Biol Chem 291:13243–13256PubMedCrossRefGoogle Scholar
  92. Körner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592PubMedCrossRefGoogle Scholar
  93. Krell T, Molina-Henares AJ, Ramos JL (2006) The IclR family of transcriptional activators and repressors can be defined by a single profile. Protein Sci 15:1207–1213PubMedPubMedCentralCrossRefGoogle Scholar
  94. Leahy JG, Johnson GR, Olsen RH (1997) Cross-regulation of toluene monooxygenases by the transcriptional activators TbmR and TbuT. Appl Environ Microbiol 63:3736–3739PubMedPubMedCentralGoogle Scholar
  95. Ledesma-García L, Sánchez-Azqueta A, Medina M, Reyes-Ramírez F, Santero E (2016) Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes. Sci Rep 6:23848PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lerche M, Dian C, Round A, Lönneborg R, Brzezinski P, Leonard GA (2016) The solution configurations of inactive and activated DntR have implications for the sliding dimer mechanism of LysR transcription factors. Sci Rep 6:19988PubMedPubMedCentralCrossRefGoogle Scholar
  97. Levy C, Pike K, Heyes DJ, Joyce MG, Gabor K, Smidt H, van der Oost J, Leys D (2008) Molecular basis of halorespiration control by CprK, a CRP-FNR type transcriptional regulator. Mol Microbiol 70:151–167PubMedPubMedCentralCrossRefGoogle Scholar
  98. Li DF, Zhang N, Hou YJ, Huang Y, Hu Y, Zhang Y, Liu SJ, Wang DC (2011) Crystal structures of the transcriptional repressor RolR reveals a novel recognition mechanism between inducer and regulator. PLoS One 6:e19529PubMedPubMedCentralCrossRefGoogle Scholar
  99. Li T, Zhao K, Huang Y, Li D, Jiang CY, Zhou N, Fan Z, Liu SJ (2012) The TetR-type transcriptional repressor RolR from Corynebacterium glutamicum regulates resorcinol catabolism by binding to a unique operator, rolO. Appl Environ Microbiol 78:6009–6016PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lin GH, Chen HP, Shu HY (2015) Detoxification of indole by an indole-induced flavoprotein oxygenase from Acinetobacter baumannii. PLoS One 10:e0138798PubMedPubMedCentralCrossRefGoogle Scholar
  101. López-Sánchez A, Rivas-Marín E, Martínez-Pérez O, Floriano B, Santero E (2009) Co-ordinated regulation of two divergent promoters through higher-order complex formation by the LysR-type regulator ThnR. Mol Microbiol 73:1086–1100PubMedCrossRefGoogle Scholar
  102. Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44PubMedCrossRefGoogle Scholar
  103. Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623PubMedCrossRefGoogle Scholar
  104. Madhushani A, del Peso-Santos T, Moreno R, Rojo F, Shingler V (2014) Transcriptional and translational control through the 5′-leader region of the dmpR master regulatory gene of phenol metabolism. Environ Microbiol 17:119–133PubMedCrossRefGoogle Scholar
  105. Manso I, Torres B, Andreu JM, Menéndez M, Rivas G, Alfonso C, Díaz E, García JL, Galán B (2009) 3-Hydroxyphenylpropionate and phenylpropionate are synergistic activators of the MhpR transcriptional regulator from Escherichia coli. J Biol Chem 284:21218–21228PubMedPubMedCentralCrossRefGoogle Scholar
  106. Marqués S, Manzanera M, González-Pérez MM, Gallegos MT, Ramos JL (1999) The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with σ32 or σ38 depending on the growth phase. Mol Microbiol 31:1105–1113PubMedCrossRefGoogle Scholar
  107. McFall SM, Chugani SA, Chakrabarty AM (1998) Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 223:257–267PubMedCrossRefGoogle Scholar
  108. Meier MJ, Paterson ES, Lambert IB (2015) Use of substrate-induced gene expression in metagenomic analysis of an aromatic hydrocarbon-contaminated soil. Appl Environ Microbiol 82:897–909PubMedCrossRefGoogle Scholar
  109. Michán C, Zhou L, Gallegos MT, Timmis KN, Ramos JL (1992) Identification of critical amino-terminal regions of XylS. The positive regulator encoded by the TOL plasmid. J Biol Chem 267:22897–22901PubMedGoogle Scholar
  110. Miyakoshi M, Urata M, Habe H, Omori T, Yamane H, Nojiri H (2006) Differentiation of carbazole catabolic operons by replacement of the regulated promoter via transposition of an insertion sequence. J Biol Chem 281:8450–8457PubMedCrossRefGoogle Scholar
  111. Mohamed M, Ismail W, Heider J, Fuchs G (2002) Aerobic metabolism of phenylacetic acids in Azoarcus evansii. Arch Microbiol 178:180–192CrossRefGoogle Scholar
  112. Molina-Fuentes A, Pacheco D, Marín P, Philipp B, Schink B, Marqués S (2015) Identification of the gene cluster for the anaerobic degradation of 3,5-dihydroxybenzoate (α-resorcylate) in Thauera aromatica strain AR-1. Appl Environ Microbiol 81:7201–7214PubMedPubMedCentralCrossRefGoogle Scholar
  113. Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186PubMedCrossRefGoogle Scholar
  114. Monferrer D, Tralau T, Kertesz MA, Dix I, Solà M, Usón I (2010) Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold. Mol Microbiol 75:1199–1214PubMedCrossRefGoogle Scholar
  115. Morabbi Heravi K, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J (2014) Transcriptional regulation of the vanillate utilization genes (vanABK operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor. J Bacteriol 197:959–972PubMedCrossRefGoogle Scholar
  116. Morawski B, Segura A, Ornston LN (2000) Repression of Acinetobacter vanillate demethylase synthesis by VanR, a member of the GntR family of transcriptional regulators. FEMS Microbiol Lett 187:65–68PubMedCrossRefGoogle Scholar
  117. Moreno R, Hernández-Arranz S, la Rosa R, Yuste L, Madhushani A, Shingler V, Rojo F (2015) The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environ Microbiol 17:105–118PubMedCrossRefGoogle Scholar
  118. Mouz S, Merlin C, Springael D (1999) A GntR-like negative regulator of the biphenyl degradation genes of the transposon Tn4371. Mol Gen Genet 262:790–799PubMedCrossRefGoogle Scholar
  119. Muraoka S, Okumura R, Ogawa N, Nonaka T, Miyashita K, Senda T (2003) Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. J Mol Biol 328:555–566PubMedCrossRefGoogle Scholar
  120. Nga DP, Altenbuchner J, Heiss GS (2004) NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1. J Bacteriol 186:98–103PubMedPubMedCentralCrossRefGoogle Scholar
  121. Niewerth H, Parschat K, Rauschenberg M, Ravoo BJ, Fetzner S (2012) The PaaX-type repressor MeqR2 of Arthrobacter sp. strain Rue61a, involved in the regulation of quinaldine catabolism, binds to its own promoter and to catabolic promoters and specifically responds to anthraniloyl coenzyme A. J Bacteriol 195:1068–1080PubMedCrossRefGoogle Scholar
  122. O’Neill E (2001) An active role for a structured B-linker in effector control of the σ54-dependent regulator DmpR. EMBO J 20:819–827PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ogawa N, McFall SM, Klem TJ, Miyashita K, Chakrabarty AM (1999) Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J Bacteriol 181:6697–6705PubMedPubMedCentralGoogle Scholar
  124. Ohtsubo Y, Delawary M, Kimbara K, Takagi M, Ohta A, Nagata Y (2001) BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp. KKS102. J Biol Chem 276:36146–36154PubMedCrossRefGoogle Scholar
  125. Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 7:215–219PubMedCrossRefGoogle Scholar
  126. Otani H, Stogios PJ, Xu X, Nocek B, Li SN, Savchenko A, Eltis LD (2015) The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Nucleic Acids Res 44:595–607PubMedPubMedCentralCrossRefGoogle Scholar
  127. Pareja E, Pareja-Tobes P, Manrique M, Pareja-Tobes E, Bonal J, Tobes R (2006) ExtraTrain: a database of extragenic regions and transcriptional information in prokaryotic organisms. BMC Microbiol 6:29PubMedPubMedCentralCrossRefGoogle Scholar
  128. Park HS, Kim HS (2001) Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process. J Bacteriol 183:5074–5081PubMedPubMedCentralCrossRefGoogle Scholar
  129. Parke D (1996) Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens. J Bacteriol 178:266–272PubMedPubMedCentralCrossRefGoogle Scholar
  130. Parke D, Ornston LN (2003) Hydroxycinnamate (hca) catabolic genes from Acinetobacter sp. strain ADP1 are repressed by hcaR and are induced by hydroxycinnamoyl-coenzyme A thioesters. Appl Environ Microbiol 69:5398–5409PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pérez-Martín J, de Lorenzo V (1995) The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor. Proc Natl Acad Sci USA 92:9392–9396PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pérez-Pantoja D, Leiva-Novoa P, Donoso RA, Little C, Godoy M, Pieper DH, González B (2015) Hierarchy of carbon source utilization in soil bacteria: hegemonic preference for benzoate in complex aromatic compound mixtures degraded by Cupriavidus pinatubonensis strain JMP134. Appl Environ Microbiol 81:3914–3924PubMedPubMedCentralCrossRefGoogle Scholar
  133. Phattarasukol S, Radey MC, Lappala CR, Oda Y, Hirakawa H, Brittnacher MJ, Harwood CS (2012) Identification of a p-coumarate degradation regulon in Rhodopseudomonas palustris by Xpression, an integrated tool for prokaryotic RNA-Seq data processing. Appl Environ Microbiol 78:6812–6818PubMedPubMedCentralCrossRefGoogle Scholar
  134. Picossi S, Belitsky BR, Sonenshein AL (2007) Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol 365:1298–1313PubMedCrossRefGoogle Scholar
  135. Popp R, Kohl T, Patz P, Trautwein G, Gerischer U (2002) Differential DNA binding of transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. J Bacteriol 184:1988–1997PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pop SM, Gupta N, Raza AS, Ragsdale SW (2006) Transcriptional activation of dehalorespiration. Identification of redox-active cysteines regulating dimerization and DNA binding. J Biol Chem 8:26382–26390Google Scholar
  137. Porrúa O, García-Jaramillo M, Santero E, Govantes F (2007) The LysR-type regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acid-dependent repositioning. Mol Microbiol 66:410–427PubMedCrossRefGoogle Scholar
  138. Prieto MA, García JL (1994) Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem 269:22823–22829PubMedGoogle Scholar
  139. Providenti MA, Wyndham RC (2001) Identification and functional characterization of CbaR, a MarR-Like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 67:3530–3541PubMedPubMedCentralCrossRefGoogle Scholar
  140. Quinn JA, McKay DB, Entsch B (2001) Analysis of the pobA and pobR genes controlling expression of p-hydroxybenzoate hydroxylase in Azotobacter chroococcum. Gene 264:77–85PubMedCrossRefGoogle Scholar
  141. Ramos JL, Marqués S, Timmis KN (1997) Transcriptional control of the Pseudomonas tol plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 51:341–373PubMedCrossRefGoogle Scholar
  142. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356PubMedPubMedCentralCrossRefGoogle Scholar
  143. Rey FE, Harwood CS (2010) FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris. Mol Microbiol 75:1007–1020PubMedCrossRefGoogle Scholar
  144. Rojas-Altuve A, Carrasco-López C, Hernández-Rocamora VM, Sanz JM, Hermoso JA (2011) Crystallization and preliminary X-ray diffraction studies of the transcriptional repressor PaaX, the main regulator of the phenylacetic acid degradation pathway in Escherichia coli W. Acta Cryst Sect F 67:1278–1280CrossRefGoogle Scholar
  145. Sakamoto K, Agari Y, Kuramitsu S, Shinkai A (2011) Phenylacetyl coenzyme A is an effector molecule of the TetR family transcriptional repressor PaaR from Thermus thermophilus HB8. J Bacteriol 193:4388–4395PubMedPubMedCentralCrossRefGoogle Scholar
  146. Sandu C, Chiribau CB, Brandsch R (2003) Characterization of HdnoR, the transcriptional repressor of the 6-hydroxy-D-nicotine oxidase gene of Arthrobacter nicotinovorans pAO1, and its DNA-binding activity in response to L- and D-nicotine derivatives. J Biol Chem 278:51307–51315PubMedCrossRefGoogle Scholar
  147. Sasson V, Shachrai I, Bren A, Dekel E, Alon U (2012) Mode of regulation and the insulation of bacterial gene expression. Mol Cell 46:399–407PubMedCrossRefGoogle Scholar
  148. Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626PubMedCrossRefGoogle Scholar
  149. Seedorff J, Schleif R (2011) Active role of the interdomain linker of AraC. J Bacteriol 193:5737–5746PubMedPubMedCentralCrossRefGoogle Scholar
  150. Shingler V (2004) Transcriptional regulation and catabolic strategies of phenol degradative pathways. In: Ramos JL (ed) Pseudomonas, vol 2. Kluwer Academic, New York, pp 451–477CrossRefGoogle Scholar
  151. Shu HY, Lin LC, Lin TK, Chen HP, Yang HH, Peng KC, Lin GH (2015) Transcriptional regulation of the iac locus from Acinetobacter baumannii by the phytohormone indole-3-acetic acid. Antonie Van Leeuwenhoek 107:1237–1247PubMedCrossRefGoogle Scholar
  152. Silva-Jiménez H, García-Fontana C, Cadirci BH, Ramos-González MI, Ramos JL, Krell T (2011) Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems. Microb Biotechnol 5:489–500PubMedCrossRefGoogle Scholar
  153. Silva-Rocha R, de Jong H, Tamames J, de Lorenzo V (2011) The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC Syst Biol 5:191PubMedPubMedCentralCrossRefGoogle Scholar
  154. Silva-Rocha R, de Lorenzo V (2012) Broadening the signal specificity of prokaryotic promoters by modifying cis-regulatory elements associated with a single transcription factor. Mol BioSyst 8:1950PubMedCrossRefGoogle Scholar
  155. Skarfstad E, O’Neill E, Garmendia J, Shingler V (2000) Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling. J Bacteriol 182:3008–3016PubMedPubMedCentralCrossRefGoogle Scholar
  156. Smirnova IA, Dian C, Leonard GA, McSweeney S, Birse D, Brzezinski P (2004) Development of a bacterial biosensor for nitrotoluenes: the crystal structure of the transcriptional regulator DntR. J Mol Biol 340:405–418PubMedCrossRefGoogle Scholar
  157. Solera D, Arenghi FLG, Woelk T, Galli E, Barbieri P (2004) TouR-mediated effector-independent growth phase-dependent activation of the σ54 Ptou promoter of Pseudomonas stutzeri OX1. J Bacteriol 186:7353–7363PubMedPubMedCentralCrossRefGoogle Scholar
  158. Suresh PS, Kumar R, Kumar A (2010) Three dimensional model for N-terminal A domain of DmpR (2-dimethylphenol) protein based on secondary structure prediction and fold recognition. In Silico Biol 10:223–233PubMedGoogle Scholar
  159. Suvorova IA, Korostelev YD, Gelfand MS (2015) GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One 10:e0132618PubMedPubMedCentralCrossRefGoogle Scholar
  160. Szőköl J, Rucká L, Šimčíková M, Halada P, Nešvera J, Pátek M (2014) Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl Microbiol Biotechnol 98:8267–8279PubMedCrossRefGoogle Scholar
  161. Teramoto M, Harayama S, Watanabe K (2001) PhcS represses gratuitous expression of phenol-metabolizing enzymes in Comamonas testosteroni R5. J Bacteriol 183:4227–4234PubMedPubMedCentralCrossRefGoogle Scholar
  162. Teufel R, Friedrich T, Fuchs G (2012) An oxygenase that forms and deoxygenates toxic epoxide. Nature 483:359–362PubMedCrossRefGoogle Scholar
  163. Thanbichler M, Iniesta AA, Shapiro L (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 35:e137–e137PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tomás-Gallardo L, Santero E, Floriano B (2012) Involvement of a putative cyclic AMP receptor protein (CRP)-like binding sequence and a CRP-like protein in glucose-mediated catabolite repression of thn genes in Rhodococcus sp. strain TFB. Appl Environ Microbiol 78:5460–5462PubMedPubMedCentralCrossRefGoogle Scholar
  165. Torres B, Porras G, García JL, Díaz E (2003) Regulation of the mhp cluster responsible for 3-(3-hydroxyphenyl)propionic acid degradation in Escherichia coli. J Biol Chem 278:27575–27585PubMedCrossRefGoogle Scholar
  166. Townsend PD, Jungwirth B, Pojer F, Bußmann M, Money VA, Cole ST, Pühler A, Tauch A, Bott M, Cann MJ, Pohl E (2014) The crystal structures of Apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors. PLoS One 9:e113265PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tralau T, Cook AM, Ruff J (2003a) An additional regulator, TsaQ, is involved with TsaR in regulation of transport during the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Arch Microbiol 180:319–326PubMedCrossRefGoogle Scholar
  168. Tralau T, Mampel J, Cook AM, Ruff J (2003b) Characterization of TsaR, an oxygen-sensitive LysR-type regulator for the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Appl Environ Microbiol 69:2298–2305PubMedPubMedCentralCrossRefGoogle Scholar
  169. Trautwein G, Gerischer U (2001) Effects exerted by tanscriptional regulator PcaU from Acinetobacter sp. strain ADP1. J Bacteriol 183:873–881Google Scholar
  170. Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68:474–500PubMedPubMedCentralCrossRefGoogle Scholar
  171. Uchiyama T, Miyazaki K (2013) Metagenomic screening for aromatic compound-responsive transcriptional regulators. PLoS One 8:e75795PubMedPubMedCentralCrossRefGoogle Scholar
  172. Ueki T (2011) Identification of a transcriptional repressor involved in benzoate metabolism in Geobacter bemidjiensis. Appl Environ Microbiol 77:7058–7062PubMedPubMedCentralCrossRefGoogle Scholar
  173. Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56PubMedPubMedCentralCrossRefGoogle Scholar
  174. Urata M, Miyakoshi M, Kai S, Maeda K, Habe H, Omori T, Yamane H, Nojiri H (2004) Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. J Bacteriol 186:6815–6823PubMedPubMedCentralCrossRefGoogle Scholar
  175. Valderrama JA, Durante-Rodríguez G, Blázquez B, García JL, Carmona M, Díaz E (2012) Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways. J Biol Chem 287:10494–10508PubMedPubMedCentralCrossRefGoogle Scholar
  176. van Aalten DMF (2001) The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J 20:2041–2050PubMedPubMedCentralCrossRefGoogle Scholar
  177. Vaneechoutte M, Young DM, Ornston LN, de Baere T, Nemec A, Van Der Reijden T, Carr E, Tjernberg I, Dijkshoorn L (2006) Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl Environ Microbiol 72:932–936PubMedPubMedCentralCrossRefGoogle Scholar
  178. Veselý M, Knoppová M, Nešvera J, Pátek M (2007) Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl Microbiol Biotechnol 76:159–168PubMedCrossRefGoogle Scholar
  179. Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J, Reinhardt R, Rabus R (2007) Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1. Proteomics 7:2222–2239PubMedCrossRefGoogle Scholar
  180. Xu Y, Heath RJ, Li Z, Rock CO, White SW (2001) The FadR.DNA complex: transcriptional control of fatty acid metabolism in Escherichia coli. J Biol Chem 276:17373–17379PubMedCrossRefGoogle Scholar
  181. Yamamoto K, Ishihama A (2002) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47:183–194CrossRefGoogle Scholar
  182. Yudistira H, McClarty L, Bloodworth RAM, Hammond SA, Butcher H, Mark BL, Cardona ST (2011) Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium. Microb Pathog 51:186–193PubMedCrossRefGoogle Scholar
  183. Zhao Y, Feng R, Zheng G, Tian J, Ruan L, Ge M, Jiang W, Lu Y (2015) Involvement of the TetR-type regulator PaaR in the regulation of pristinamycin I biosynthesis through an effect on precursor supply in Streptomyces pristinaespiralis. J Bacteriol 197:2062–2071PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. Durante-Rodríguez
    • 1
  • H. Gómez-Álvarez
    • 1
  • J. Nogales
    • 1
  • M. Carmona
    • 1
  • E. Díaz
    • 1
  1. 1.Environmental Biology DepartmentCentro de Investigaciones Biológicas-CSICMadridSpain

Personalised recommendations