Problems of Hydrophobicity/Bioavailability: An Introduction

  • Hauke Harms
  • Kilian E. C. Smith
  • Lukas Y. Wick
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


This chapter discusses how the hydrophobicity and other properties of oil hydrocarbons influence their availability for toxic exposure, microbial degradation and growth. It also describes how the hydrocarbon bioavailability can control the maximum population size of a degrading microbial community in a given habitat (carrying capacity). Bioavailability is operationalized and presented as a process at the interface between microbial dynamics and physicochemical constraints.


  1. Booij K, Robinson CD, Burgess RM, Mayer P, Roberts CA, Ahrens L et al (2016) Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ Sci Technol 50:3–17CrossRefPubMedGoogle Scholar
  2. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252CrossRefGoogle Scholar
  3. Eastcott L, Shiu YS, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4:191–216CrossRefGoogle Scholar
  4. Hanzel J, Thullner M, Harms H, Wick LY (2012) Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour-phase PAH. Microb Biotechnol 5:79–86CrossRefPubMedGoogle Scholar
  5. Harms H (1996) Bacterial growth on distant naphthalene diffusing through water, air, water-saturated and nonsaturated porous media. Appl Environ Microbiol 62:2286–2293PubMedPubMedCentralGoogle Scholar
  6. Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428CrossRefPubMedGoogle Scholar
  7. Hoff JT, Mackay D, Gillham R, Shiu WY (1993) Partitioning of organic-chemicals at the air water interface in environmental systems. Environ Sci Technol 27:2174–2180CrossRefGoogle Scholar
  8. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84CrossRefPubMedGoogle Scholar
  9. Koch AL (1990) Diffusion – the crucial process in many aspects of the biology of bacteria. Adv Microb Ecol 11:37–70CrossRefGoogle Scholar
  10. Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666PubMedPubMedCentralGoogle Scholar
  11. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ Jr, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347CrossRefGoogle Scholar
  12. Mao XH, Jiang R, Xiao W, Yu JG (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435CrossRefPubMedGoogle Scholar
  13. Naidu R, Channey R, McConnell S, Johnston N, Semple KT, McGrath S, Dries V, Nathanail P, Harmsen J, Pruszinski A, MacMillan J, Palanisami T (2015) Towards bioavailability-based soil criteria: past, present and future perspectives. Environ Sci Pollut Res 22:8779–8785CrossRefGoogle Scholar
  14. NRC Committee (2003) NRC Committee on Bioavailability of Contaminants in Soils and Sediments. Bioavailability of contaminants in soils and sediments: processes, tools and applications. The National Academic Press, Washington, DCGoogle Scholar
  15. Ortega-Calvo JJ, Harmsen J, Parsons JR, Semple KT, Aitken MD, Ajao C, Eadsforth C, Galay-Burgos M, Naidu R, Oliver R, Peijnenburg W, Rombke J, Streck G, Versonnen B (2015) From bioavailability science to regulation of organic chemicals. Environ Sci Technol 49:10255–10264CrossRefPubMedGoogle Scholar
  16. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245CrossRefPubMedGoogle Scholar
  17. Rein A, Adam IKU, Miltner A, Brumme K, Kastner M, Trapp S (2016) Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-model simulations for prediction of bioremediation success. J Hazard Mater 306:105–114CrossRefPubMedGoogle Scholar
  18. Schwarzenbach RP, Gschwend PM, Imboden DM (2017) Environmental organic chemistry. Wiley, New YorkGoogle Scholar
  19. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231ACrossRefPubMedGoogle Scholar
  20. Soil Quality Requirements and Guidance for the Selection and Application of Methods for the Assessment of Bioavailability of Contaminants in Soil and Soil Materials (2008) ISO No. 17402; International Organization for Standardization: Geneva, Switzerland,
  21. Thullner M, Kampara M, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation: 1. Theoretical calculation. Environ Sci Technol 42:6544–6551Google Scholar
  22. Tros ME, Bosma TNP, Schraa G, Zehnder AJB (1996) Measurement of minimum substrate concentration (S-min) in a recycling fermenter and its prediction from the kinetic parameters of Pseudomonas sp. strain B13 from batch and chemostat cultures. Appl Environ Microbiol 62:3655–3661PubMedPubMedCentralGoogle Scholar
  23. van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influences of interfaces on microbial activity. Microbiol Rev 54:75–87PubMedPubMedCentralGoogle Scholar
  24. van Uden N (1967) Transport-limited fermentation in the chemostat and its competitive inhibition: a theoretical treatment. Arch Mikrobiol 58:145–154CrossRefPubMedGoogle Scholar
  25. Wick LY, Colangelo T, Harms H (2001) Kinetics of mass-transfer-limited growth on solid PAHs. Environ Sci Technol 35:354–361CrossRefPubMedGoogle Scholar
  26. Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Biotechnol Microbiol 58:378–385CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hauke Harms
    • 1
  • Kilian E. C. Smith
    • 2
  • Lukas Y. Wick
    • 1
  1. 1.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Institute for Environmental Research (Biology 5)RWTH Aachen UniversityAachenGermany

Personalised recommendations