Biofilm Stress Responses Associated to Aromatic Hydrocarbons

  • Laura Barrientos-Moreno
  • Manuel Espinosa-Urgel
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Efficient biotransformations that involve toxic aromatic hydrocarbons and bioremediation of environmental sites polluted with these compounds rely on the metabolic potential of microorganisms and their survival strategies to cope with their deleterious effects. Biofilm formation is acknowledged as one of the main colonization and persistence mechanisms of bacteria in the environment, providing protection against stress. Many bioremediation systems and bioreactors commonly rely on pure culture or mixed community biofilms. Although reaction parameters and overall population dynamics have been studied in some instances, there is limited information on how toxic aromatic hydrocarbons influence the process of biofilm development, the potentially associated tolerance mechanisms and their interplay with other biofilm stress response mechanisms. In this chapter, we briefly summarize the current information on this topic and present the existing research gaps that could expand the biotechnological exploitation of biofilms in this field.



Work funded by grant P11-CVI-7391 from Junta de Andalucía and EFDR funds.


  1. Alguel Y, Meng C, Terán W, Krell T, Ramos JL, Gallegos MT, Zhang X (2007) Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J Mol Biol 369:829–840CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alvarez PJJ, Anid PJ, Vogel TM (1991) Kinetics of aerobic biodegradation of benzene and toluene in sandy aquifer material. Biodegradation 2:45–51CrossRefGoogle Scholar
  3. Amit K, Dewulf J, Wiele TV, Langenhove HV (2009) Bacterial dynamics of biofilm development during toluene degradation by Burkholderia vietnamiensis G4 in a gas phase membrane bioreactor. J Microbiol Biotechnol 19:1028–1033CrossRefPubMedGoogle Scholar
  4. Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buroni S, Matthijs N, Spadaro F, Van Acker H, Scoffone VC, Pasca MR, Riccardi G, Coenye T (2014) Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells. Antimicrob Agents Chemother 58:7424–7429CrossRefPubMedPubMedCentralGoogle Scholar
  6. Christensen BB, Sternberg C, Andersen JB, Eberl L, Møller S, Givskov M, Molin S (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255PubMedPubMedCentralGoogle Scholar
  7. Chung CH, Fen SY, Yu SC, Wong HC (2015) Influence of oxyR on growth, biofilm formation, and mobility of Vibrio parahaemolyticus. Appl Environ Microbiol 82:788–796CrossRefPubMedGoogle Scholar
  8. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedGoogle Scholar
  9. D’Alvise PW, Sjøholm OR, Yankelevich T, Jin Y, Wuertz S, Smets BF (2010) TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiol Lett 312:84–92CrossRefPubMedGoogle Scholar
  10. Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991CrossRefPubMedGoogle Scholar
  11. Duque E, Segura A, Mosqueda G, Ramos JL (2001) Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida. Mol Microbiol 39:1100–1106CrossRefPubMedGoogle Scholar
  12. Eaton DS, Crosson SD, Fiebig A (2016) Proper control of Caulobacter crescentus cell-surface adhesion requires the general protein chaperone, DnaK. J Bacteriol 198:2631–2642Google Scholar
  13. Espinosa-Urgel M, Serrano L, Ramos JL, Fernández-Escamilla AM (2015) Engineering biological approaches for detection of toxic compounds: a new microbial biosensor based on the Pseudomonas putida TtgR repressor. Mol Biotechnol 57:558–564CrossRefPubMedGoogle Scholar
  14. Fan LS, Leyva-Ramos R, Wisecarver KD, Zehner BJ (1990) Diffusion of phenol through a biofilm rrown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor. Biotechnol Bioeng 35:279–286CrossRefPubMedGoogle Scholar
  15. Farhadian M, Duchez D, Vachelard C, Larroche C (2008) Monoaromatics removal from polluted water through bioreactors-a review. Water Res 42:1325–1341CrossRefPubMedGoogle Scholar
  16. Franklin FC, Bagdasarian M, Bagdasarian MM, Timmis KN (1981) Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Natl Acad Sci U S A 78:7458–7462CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gambino M, Cappitelli F (2016) Mini-review: biofilm responses to oxidative stress. Biofouling 32:167–178CrossRefPubMedGoogle Scholar
  18. Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92(Suppl):98S–110SCrossRefPubMedGoogle Scholar
  19. Gosset G (2009) Production of aromatic compounds in bacteria. Curr Opin Biotechnol 20:651–658CrossRefPubMedGoogle Scholar
  20. Guazzaroni ME, Krell T, Felipe A, Ruiz R, Meng C, Zhang X, Gallegos MT, Ramos JL (2005) The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. J Biol Chem 280:20887–20893CrossRefPubMedGoogle Scholar
  21. Hennequin C, Forestier C (2009) OxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun 77:5449–5457CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918CrossRefPubMedGoogle Scholar
  23. Holden PA, Hunt JR, Firestone MK (1997) Toluene diffusion and reaction in unsaturated Pseudomonas putida biofilms. Biotechnol Bioeng 56:656–670CrossRefPubMedPubMedCentralGoogle Scholar
  24. Isken S, de Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lemos JA, Chen YY, Burne RA (2001) Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J Bacteriol 183:6074–6084CrossRefPubMedPubMedCentralGoogle Scholar
  26. Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77:549–561CrossRefPubMedGoogle Scholar
  27. Martínez-Gil M, Quesada JM, Ramos-González MI, Soriano MI, de Cristóbal RE, Espinosa-Urgel M (2013) Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res Microbiol 164:382–389CrossRefPubMedGoogle Scholar
  28. Martínez-Gil M, Ramos-González MI, Espinosa-Urgel M (2014) Roles of cyclic di-GMP and the Gac system in transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF. J Bacteriol 196:1287–1313CrossRefGoogle Scholar
  29. Molina-Santiago C, Cordero BF, Daddaoua A, Udaondo Z, Manzano J, Valdivia M, Segura A, Ramos JL, Duque E (2016) Pseudomonas putida as a platform for the synthesis of aromatic compounds. Microbiology. doi:10.1099/mic.0.000333. (in press)PubMedGoogle Scholar
  30. Møller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S (1998) In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732PubMedPubMedCentralGoogle Scholar
  31. Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422. doi:10.3389/fmicb.2013.00422CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nielsen L, Li X, Halverson LJ (2011) Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol 13:1342–1356CrossRefPubMedGoogle Scholar
  33. Poole K (2004) Efflux pumps. In: Ramos JL (ed) Pseudomonas vol. I, genomics, life style and molecular architecture. Kluwer, New York, pp 635–674Google Scholar
  34. Ramos JL, Duque E, Huertas MJ, Haïdour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566CrossRefPubMedGoogle Scholar
  36. Rodríguez-Herva JJ, García V, Hurtado A, Segura A, Ramos JL (2007) The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 9:1550–1561CrossRefPubMedGoogle Scholar
  37. Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-TIE. J Bacteriol 183:3967–3973CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sakhtah H, Koyama L, Zhang Y, Morales DK, Fields BL, Price-Whelan A, Hogan DA, Shepard K, Dietrich LE (2016) The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A 113:E3538–E3547CrossRefPubMedPubMedCentralGoogle Scholar
  39. Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198CrossRefPubMedGoogle Scholar
  40. Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, Ramos JL (2012) Solvent tolerance in gram-negative bacteria. Curr Opin Biotechnol 23:415–421CrossRefPubMedGoogle Scholar
  41. Segura A, Molina L, Ramos JL (2014) Plasmid-mediated tolerance toward environmental pollutants. Microbiol Spectr 2(6):PLAS-0013–PLAS-2013Google Scholar
  42. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  43. Soto SM (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4:223–229CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sutherland IW (2001) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227CrossRefPubMedGoogle Scholar
  45. Svensson SL, Pryjma M, Gaynor EC (2014) Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS One 9(8):e106063CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vargas-Tah A, Gosset G (2015) Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol 3:116CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang P, Lee Y, Igo MM, Roper MC (2016) Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa. Mol Plant Pathol. doi:10.1111/mpp.12456. (in press)Google Scholar
  48. Weber FJ, Ooijkaas LP, Schemen RM, Hartmans S, de Bont JA (1993) Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol 59:3502–3504PubMedPubMedCentralGoogle Scholar
  49. Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P, Dé E, Grillot-Courvalin C (2015) Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio 6(2.) pii:e00309–e00315CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yousef-Coronado F, Travieso ML, Espinosa-Urgel M (2008) Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 288:118–124CrossRefPubMedGoogle Scholar
  51. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laura Barrientos-Moreno
    • 1
  • Manuel Espinosa-Urgel
    • 1
  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations