The Potential of Hydrocarbon Chemotaxis to Increase Bioavailability and Biodegradation Efficiency

  • Jesús Lacal
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Hydrocarbons are simple organic compounds, containing only carbon and hydrogen, but despite their simplicity, they are common contaminants in our environment. This and the risks they pose to human health require remediation strategies. The decomposition of hydrocarbons by microorganisms into less or nontoxic simpler substances has been under study for many years and important advances have been made in this field. Interestingly, cell adherence and surface hydrophobicity, biosurfactant production, motility, and chemotaxis processes are bacterial abilities that reduce the distance between the microorganisms and solid substrates, enhancing bioavailability. Particularly, chemotaxis may enable hydrocarbon-utilizing bacteria to actively seek new substrates once they are depleted in a given contaminated area increasing their bioavailability and biodegradation. This chapter recapitulates major advances in the potential of hydrocarbon chemotaxis to increase bioavailability and biodegradation efficiency.


  1. Abioye OP (2011) Biological remediation of hydrocarbon and heavy metals contaminated soil, soil contamination. MSc Simone Pascucci (Ed.), INTECH, pp 127–142, ISBN: 978-953-307-647-8Google Scholar
  2. Adadevoh JS, Triolo S, Ramsburg CA, Ford RM (2016) Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environ Sci Technol 50:181–187CrossRefPubMedGoogle Scholar
  3. Adamson DT, McDade JM, Hughes JB (2003) Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533CrossRefPubMedGoogle Scholar
  4. Alexandre G, Greer-Phillips S, Zhulin IB (2004) Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 28:113–126CrossRefPubMedGoogle Scholar
  5. Benov L, Fridovich I (1996) Escherichia coli Exhibits negative chemotaxis in gradients of hydrogen peroxide, hypochlorite, and N-chlorotaurine: products of the respiratory burst of phagocytic cells. Proc Natl Acad Sci U S A 93:4999–5002CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhushan B, Chauhan A, Samanta SK, Jain RK (2000) Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 274:626–630CrossRefPubMedGoogle Scholar
  7. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821CrossRefPubMedGoogle Scholar
  8. Bi S, Lai L (2015) Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 72:691–708CrossRefPubMedGoogle Scholar
  9. Binet P, Portal JM, Leyval C (2000) Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017CrossRefGoogle Scholar
  10. Bisht S, Pandey P, Sood A, Sharma S, Bisht NS (2010) Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populusdeltoides. Braz J Microbiol 41:922–930CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46:7–21CrossRefPubMedPubMedCentralGoogle Scholar
  12. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810PubMedGoogle Scholar
  13. Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152CrossRefPubMedGoogle Scholar
  14. Duffy K, Ford RM, Cummings PT (1997) Residence time calculation for chemotactic bacteria within porous media. Biophys J 73:2930–2936CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ford RM, Harvey RW (2007) Role of chemotaxis in the transport of bacteria through saturated porous media. Adv Water Resour 30:1608–1617CrossRefGoogle Scholar
  16. Furuno S, Pazolt K, Rabe C, Neu TR, Harms H, Wick LY (2010) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon degrading bacteria in water-unsaturated systems. Environ Microbiol 12:1391–1398PubMedGoogle Scholar
  17. Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243CrossRefPubMedGoogle Scholar
  18. Gilbert D, Jakobsen HH, Winding A, Mayer P (2014) Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ Sci Technol 48:4368–4375CrossRefPubMedGoogle Scholar
  19. Gordillo F, Chávez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328CrossRefPubMedGoogle Scholar
  20. Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115PubMedPubMedCentralGoogle Scholar
  21. Hanzel J, Harms H, Wick LY (2010) Bacterial chemotaxis along vapor phase gradients of naphthalene. Environ Sci Technol 44:9304–9310CrossRefPubMedGoogle Scholar
  22. Harms H, Wick LY (2006) Dispersing pollutant-degrading bacteria in contaminated soil without touching it. Eng Life Sci 6:252–260CrossRefGoogle Scholar
  23. Harwood CS, Parales RE, Dispensa M (1990) Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl Environ Microbiol 56:1501–1503PubMedPubMedCentralGoogle Scholar
  24. Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstoniaeutropha JMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972CrossRefPubMedPubMedCentralGoogle Scholar
  25. Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PC (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189:3502–3514CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jimenez-Sanchez C, Wick LY, Ortega-Calvo JJ (2012) Chemical effectors cause different motile behavior and deposition of bacteria in porous media. Environ Sci Technol 46:6790–6797CrossRefPubMedGoogle Scholar
  27. Kim HE, Shitashiro M, Kuroda A, Takiguchi N, Ohtake H, Kato J (2006) Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene. J Bacteriol 188:6700–6702CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim HE, Shitashiro M, Kuroda A, Takiguchi N, Kato J (2007) Ethylene chemotaxis in Pseudomonas aeruginosa and other Pseudomonas species. Microbes Environ 22:186–189CrossRefGoogle Scholar
  29. Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124CrossRefPubMedGoogle Scholar
  30. Krell T, Lacal J, Reyes-Darias JA, Jimenez-Sanchez C, Sungthong R, Ortega-Calvo JJ (2013) Bioavailability of pollutants and chemotaxis. Curr Opin Biotechnol 24:451–456CrossRefPubMedGoogle Scholar
  31. Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T (2010) Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 12:2873–2884CrossRefPubMedGoogle Scholar
  32. Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M, Segura A, Calvo JJ, Jímenez-Sánchez C, Krell T, Ramos JL (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744CrossRefPubMedGoogle Scholar
  33. Lacal J, Reyes-Darias JA, García-Fontana C, Ramos JL, Krell T (2013) Tactic responses to pollutants and their potential to increase biodegradation efficiency. J Appl Microbiol 114:923–933CrossRefPubMedGoogle Scholar
  34. Lanfranconi MP, Alvarez HM, Studdert CA (2003) A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol 5:1002–1008CrossRefPubMedGoogle Scholar
  35. Law AMJ, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69:5968–5973CrossRefPubMedPubMedCentralGoogle Scholar
  36. Law AMJ, Aitken MD (2006) The effect of oxygen on chemotaxis to naphthalene by Pseudomonas putida G7. Biotechnol Bioeng 93:457–464CrossRefPubMedGoogle Scholar
  37. Lekmine G, SookhakLari K, Johnston CD, Bastow TP, Rayner JL, Davis GB (2017) Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands. J Contam Hydrol 196:30–42CrossRefPubMedGoogle Scholar
  38. Leungsakul T, Keenan BG, Smets BF, Wood TK (2005) TNT and nitroaromatic compounds are chemoattractants for Burkholderiacepacia R34 and Burkholderia sp. strain DNT. Appl Microbiol Biotechnol 69:321–325CrossRefPubMedGoogle Scholar
  39. Liu X, Parales RE (2009) Bacterial chemotaxis to atrazine and related s-triazines. Appl Environ Microbiol 75:5481–5488CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383CrossRefGoogle Scholar
  41. Meng L, Li H, Bao M, Sun P (2017) Metabolic pathway for a new strain Pseudomonas synxantha LSH-7′: from chemotaxis to uptake of n-hexadecane. Sci Rep 7:39068CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miya RK, Firestone MK (2000) Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J Environ Qual 29:584–592CrossRefGoogle Scholar
  43. Mosqueda G, Ramos-González MI, Ramos JL (1999) Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232:69–76CrossRefPubMedGoogle Scholar
  44. Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P, Grimaud R, Sivadon P (2014) The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiol Ecol 90:816–831CrossRefPubMedGoogle Scholar
  45. Nijland R, Burgess JG (2010) Bacterial olfaction. Biotechnol J 5:974–977CrossRefPubMedGoogle Scholar
  46. Oen AM, Beckingham B, Ghosh U, Kruså ME, Luthy RG, Hartnik T, Henriksen T, Cornelissen G (2012) Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments. Environ Sci Technol 46:810–817CrossRefPubMedGoogle Scholar
  47. Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44:373–381CrossRefPubMedGoogle Scholar
  48. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. App Environ Microbiol 68:5789–5795CrossRefGoogle Scholar
  49. Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33:324–375CrossRefPubMedGoogle Scholar
  50. Pandey J, Sharma NK, Khan F, Ghosh A, Oakeshott JG, Jain RK, Pandey G (2012) Chemotaxis of Burkholderia sp. strain SJ98 towards chloronitroaromatic compounds that it can metabolise. BMC Microbiol 12:19CrossRefPubMedPubMedCentralGoogle Scholar
  51. Parales RE (2004) Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. Appl Environ Microbiol 70:285–292CrossRefPubMedPubMedCentralGoogle Scholar
  52. Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273CrossRefPubMedGoogle Scholar
  53. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104CrossRefPubMedPubMedCentralGoogle Scholar
  54. Philips J, Hamels F, Smolders E, Springael D (2012) Distribution of a dechlorinating community in relation to the distance from a trichloroethene dense nonaqueous phase liquid in a model aquifer. FEMS Microbiol Ecol 81:636–647CrossRefPubMedGoogle Scholar
  55. Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123CrossRefPubMedGoogle Scholar
  56. Sampedro I, Parales RE, Krell T, Hill JE (2015) Pseudomonas chemotaxis. FEMS Microbiol Rev 39:17–46PubMedGoogle Scholar
  57. Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392CrossRefPubMedGoogle Scholar
  58. Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253CrossRefPubMedGoogle Scholar
  59. Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150:166–176CrossRefPubMedGoogle Scholar
  60. Shitashiro M, Tanaka H, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Kato J (2005) Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. J Biosci Bioeng 99:396–402CrossRefPubMedGoogle Scholar
  61. Singh R, Olson M (2010) Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1. Environ Toxicol Chem 29:56–63CrossRefPubMedGoogle Scholar
  62. Sleep BE, Seepersad DJ, Kaiguo MO, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebron C, Lollar BS, Major DW, Edwards EA (2006) Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633CrossRefPubMedGoogle Scholar
  63. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N, Sanford RA, Mesbah NM, Löffler FE (2006) Geobacterlovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tejeda-Agredano MC, Gallego S, Niqui-Arroyo JL, Vila J, Grifoll M, Ortega-Calvo JJ (2011) Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids. Environ Sci Technol 45:1074–1081CrossRefPubMedGoogle Scholar
  65. Tremaroli V, VacchiSuzzi C, Fedi S, Ceri H, Zannoni D, Turner RJ (2010) Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiol Ecol 74:291–301CrossRefPubMedGoogle Scholar
  66. Tsuda M, Iino T (1990) Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol Gen Genet 223:33–39CrossRefPubMedGoogle Scholar
  67. Vardar G, Barbieri P, Wood TK (2005) Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderiacepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol 66:696–701CrossRefPubMedGoogle Scholar
  68. Velasco-Casal P, Wick LY, Ortega-Calvo JJ (2008) Chemoeffectors decrease the deposition of chemotactic bacteria during transport in porous media. Environ Sci Technol 42:1131–1137CrossRefPubMedGoogle Scholar
  69. Wang X, Long T, Ford RM (2012) Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Biotechnol Bioeng 109:1622–1628CrossRefPubMedGoogle Scholar
  70. Wang X, Atencia J, Ford RM (2015) Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol Bioeng 112:896–904CrossRefPubMedGoogle Scholar
  71. Wang X, Lanning LM, Ford RM (2016) Enhanced retention of chemotactic bacteria in a pore network with residual NAPL contamination. Environ Sci Technol 50:165–172CrossRefPubMedGoogle Scholar
  72. Yang Y, McCarty PL (2002) Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environ Sci Technol 36:3400–3404CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and GeneticsUniversity of SalamancaSalamancaSpain

Personalised recommendations