Methylation of Proteins: Biochemistry and Functional Consequences

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Methylation is one of the most abundant modifications that the proteome of living cells undergo. Catalyzed by enzymes of the methyltransferase family, it occurs in many biological processes of prokaryotes and eukaryotes. The most common methylations occur on the amino groups of lysine and arginine side chains providing them with hydrophobic and steric properties that affect the way they behave and recognize other proteins and nucleic acids. Methylation of proteins occurs at a posttranslational level, and its main function is the effective control of the gene expression by histones and transcription factors. Other functions are protein labeling for cellular localization, RNA processing, ribosome assembly, or cell signaling. Methylations also occur at the N- and C-termini of proteins or on carboxyl and thiol groups of histidine, cysteine, proline, or glutamate side chains.

References

  1. Allers J, Shamoo Y (2001) Structure-based analysis of protein-RNA interactions using the program ENTANGLE. J Mol Biol 311(1):75–86CrossRefPubMedGoogle Scholar
  2. Antommattei FM, Weis RM (2006) 12 reversible methylation of glutamate residues in the receptor proteins of bacterial sensory systems. Enzyme 24:325–382Google Scholar
  3. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17CrossRefPubMedGoogle Scholar
  5. Binda O (2013) On your histone mark, SET, methylate! Epigenetics 8(5):457–463CrossRefPubMedPubMedCentralGoogle Scholar
  6. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48(4):491–507CrossRefPubMedGoogle Scholar
  7. Blanc RS, Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65(1):8–24CrossRefPubMedGoogle Scholar
  8. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clarke SG (2013) Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 38(5):243–252CrossRefPubMedPubMedCentralGoogle Scholar
  10. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031CrossRefPubMedGoogle Scholar
  11. Falnes PO, Jakobsson ME, Davydova E, Ho A, Malecki J (2016) Protein lysine methylation by seven-beta-strand methyltransferases. Biochem J 473(14):1995–2009CrossRefPubMedGoogle Scholar
  12. Fisk JC, Read LK (2011) Protein arginine methylation in parasitic protozoa. Eukaryot Cell 10(8):1013–1022CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96(17):9459–9464CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garcia-Fontana C, Reyes-Darias JA, Munoz-Martinez F, Alfonso C, Morel B, Ramos JL, Krell T (2013) High specificity in CheR methyltransferase function: CheR2 of Pseudomonas putida is essential for chemotaxis, whereas CheR1 is involved in biofilm formation. J Biol Chem 288(26):18987–18999CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garcia-Fontana C, Corral Lugo A, Krell T (2014) Specificity of the CheR2 methyltransferase in Pseudomonas aeruginosa is directed by a C-terminal pentapeptide in the McpB chemoreceptor. Sci Signal 7(320):ra34CrossRefPubMedGoogle Scholar
  16. Gary JD, Clarke S (1998) RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol 61:65–131CrossRefPubMedGoogle Scholar
  17. Gowri Shankar BA, Sarani R, Michael D, Mridula P, Ranjani CV, Sowmiya G, Vasundhar B, Sudha P, Jeyakanthan J, Velmurugan D, Sekar K (2007) Ion pairs in non-redundant protein structures. J Biosci 32(4):693–704CrossRefPubMedGoogle Scholar
  18. Grillo MA, Colombatto S (2005) S-adenosylmethionine and protein methylation. Amino Acids 28(4):357–362CrossRefPubMedGoogle Scholar
  19. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33(1):9–19CrossRefPubMedGoogle Scholar
  20. Huang J, Berger SL (2008) The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev 18(2):152–158CrossRefPubMedGoogle Scholar
  21. Jurica MS, Stoddard BL (1998) Mind your B’s and R’s: bacterial chemotaxis, signal transduction and protein recognition. Structure 6(7):809–813CrossRefPubMedGoogle Scholar
  22. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:pii: srep00090CrossRefGoogle Scholar
  23. Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113(1):50–87CrossRefPubMedGoogle Scholar
  24. Lake AN, Bedford MT (2007) Protein methylation and DNA repair. Mutat Res 618(1–2):91–101CrossRefPubMedGoogle Scholar
  25. Lanouette S, Mongeon V, Figeys D, Couture JF (2014) The functional diversity of protein lysine methylation. Mol Syst Biol 10:724CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee YH, Stallcup MR (2009) Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23(4):425–433CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lee J, Stock J (1993) Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem 268(26):19192–19195PubMedGoogle Scholar
  28. Lee SW, Berger SJ, Martinovic S, Pasa-Tolic L, Anderson GA, Shen Y, Zhao R, Smith RD (2002) Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. Proc Natl Acad Sci USA 99(9):5942–5947CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li G, Weis RM (2000) Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100(3):357–365CrossRefPubMedGoogle Scholar
  30. Low JK, Wilkins MR (2012) Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 279(24):4423–4443CrossRefPubMedGoogle Scholar
  31. Lu R, Wang GG (2013) Tudor: a versatile family of histone methylation ‘readers’. Trends Biochem Sci 38(11):546–555CrossRefPubMedGoogle Scholar
  32. Molina-Serrano D, Schiza V, Kirmizis A (2013) Cross-talk among epigenetic modifications: lessons from histone arginine methylation. Biochem Soc Trans 41(3):751–759CrossRefPubMedGoogle Scholar
  33. Moore KE, Gozani O (2014) An unexpected journey: lysine methylation across the proteome. Biochim Biophys Acta 1839(12):1395–1403CrossRefPubMedPubMedCentralGoogle Scholar
  34. Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15CrossRefPubMedGoogle Scholar
  35. Nyman T, Schuler H, Korenbaum E, Schutt CE, Karlsson R, Lindberg U (2002) The role of MeH73 in actin polymerization and ATP hydrolysis. J Mol Biol 317(4):577–589CrossRefPubMedGoogle Scholar
  36. Paik WK, Paik DC, Kim S (2007) Historical review: the field of protein methylation. Trends Biochem Sci 32(3):146–152CrossRefPubMedGoogle Scholar
  37. Polevoda B, Sherman F (2007) Methylation of proteins involved in translation. Mol Microbiol 65(3):590–606CrossRefPubMedGoogle Scholar
  38. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599CrossRefPubMedGoogle Scholar
  39. Schubert HL, Blumenthal RM, Cheng X (2006) 1 Protein methyltransferases: their distribution among the five structural classes of AdoMet-dependent methyltransferases. Enzyme 24:3–28Google Scholar
  40. Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14CrossRefPubMedGoogle Scholar
  41. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953CrossRefPubMedGoogle Scholar
  42. Siddique AN, Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Auto-methylation of the mouse DNA-(cytosine C5)-methyltransferase Dnmt3a at its active site cysteine residue. FEBS J 278(12):2055–2063CrossRefPubMedGoogle Scholar
  43. Sprung R, Chen Y, Zhang K, Cheng D, Zhang T, Peng J, Zhao Y (2008) Identification and validation of eukaryotic aspartate and glutamate methylation in proteins. J Proteome Res 7(3):1001–1006CrossRefPubMedPubMedCentralGoogle Scholar
  44. Stock A, Clarke S, Clarke C, Stock J (1987) N-terminal methylation of proteins: structure, function and specificity. FEBS Lett 220(1):8–14CrossRefPubMedGoogle Scholar
  45. Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18(12):1414–1420CrossRefPubMedGoogle Scholar
  46. Walsh CT (2006) Posttranslational modification of proteins: expanding Nature’s invention. Roberst Publishers, Greenwood VillageGoogle Scholar
  47. Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG (2010) A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 285(48):37598–37606CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wei H, Mundade R, Lange KC, Lu T (2014) Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 13(1):32–41CrossRefPubMedGoogle Scholar
  49. Weiss VH, McBride AE, Soriano MA, Filman DJ, Silver PA, Hogle JM (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat Struct Biol 7(12):1165–1171CrossRefPubMedGoogle Scholar
  50. Wozniak GG, Strahl BD (2014) Hitting the ‘mark’: interpreting lysine methylation in the context of active transcription. Biochim Biophys Acta 1839(12):1353–1361CrossRefPubMedGoogle Scholar
  51. Wu J, Tolstykh T, Lee J, Boyd K, Stock JB, Broach JR (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J 19(21):5672–5681CrossRefPubMedPubMedCentralGoogle Scholar
  52. Young BD, Weiss DI, Zurita-Lopez CI, Webb KJ, Clarke SG, McBride AE (2012) Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry 51(25):5091–5104CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain

Personalised recommendations