C1 Gas Refinery

  • Ji Eun Woo
  • Seung Min Song
  • Sang Yup Lee
  • Yu-Sin Jang
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


C1 gas has been considered as a feedstock for biorefinery applications because CO, CO2, and CH4 can be easily obtained from synthetic and natural gases. C1 gas-fermenting microorganisms utilize these gases as sole carbon sources to generate cellular energy. Representatives of this class of microorganisms include cyanobacteria, acetogens, and methanotrophs, which have recently been engineered for the production of chemicals from such C1 gases. As it stands, the spectrum of target chemicals is limited to methanol, ethanol, butanol, isobutanol, isobutyraldehydes, acetone, 2,3-butanediol, lactate, butyrate, and terpenoids. In this chapter, we review the metabolic pathways for assimilation of C1 gases in cyanobacteria, acetogens, and methanotrophs. We also summarize the metabolic engineering strategies for developing host strains for the production of chemicals from C1 gases.



This work was supported by grants from the C1 Gas Refinery Project (NRF-2016M3D3A1A01913250) and the Basic Science Research Program (NRF-2016R1D1A3B04933184) from the Ministry of Science, ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea.


  1. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180CrossRefPubMedGoogle Scholar
  2. Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80:2410–2416CrossRefPubMedPubMedCentralGoogle Scholar
  3. Case AE, Atsumi S (2016) Cyanobacterial chemical production. J Biotechnol 231:106–114CrossRefPubMedGoogle Scholar
  4. Clomburg JM, Crumbley AM, Gonzalez R (2017) Industrial biomanufacturing: the future of chemical production. Science 355:aag0804Google Scholar
  5. Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528PubMedPubMedCentralGoogle Scholar
  6. Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864CrossRefGoogle Scholar
  7. Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102:7349–7353CrossRefPubMedGoogle Scholar
  8. Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103CrossRefPubMedGoogle Scholar
  9. Durre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72CrossRefPubMedGoogle Scholar
  10. Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865CrossRefGoogle Scholar
  11. Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:21585CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Flüchter S, Öztürk H, Blümke W, May A, Fischer R-J, Bahl H, Dürre P (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47CrossRefPubMedGoogle Scholar
  13. Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS, Thomas TL, Youderian P, Golden SS (2005) High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res 12:103–115CrossRefPubMedGoogle Scholar
  14. Jablonsky J, Bauwe H, Wolkenhauer O (2011) Modeling the Calvin-Benson cycle. BMC Syst Biol 5:185CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jang YS, Lee J, Malaviya A, Seung do Y, Cho JH, Lee SY (2012) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198CrossRefPubMedGoogle Scholar
  16. Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed Engl 46:5056–5058CrossRefPubMedGoogle Scholar
  18. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136CrossRefPubMedGoogle Scholar
  19. Kim DU, Kim HJ, Jeong YS, Na HB, Cha Y-L, Koo B-C, Kim J, Yun HD, Lee J-K, Kim H (2015) Enhanced saccharification of reed and rice straws by the addition of β-1,3-1,4-glucanase with broad substrate specificity and calcium ion. Appl Biol Chem 58:29–33Google Scholar
  20. Kita A, Iwasaki Y, Sakai S, Okuto S, Takaoka K, Suzuki T, Yano S, Sawayama S, Tajima T, Kato J, Nishio N, Murakami K, Nakashimada Y (2013) Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J Biosci Bioeng 115:347–352CrossRefPubMedGoogle Scholar
  21. Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363CrossRefPubMedGoogle Scholar
  23. Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109:6018–6023CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6:2672–2681CrossRefGoogle Scholar
  25. Lee SG, Goo JH, Kim HG, Oh J-I, Kim YM, Kim SW (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26:947–950CrossRefPubMedGoogle Scholar
  26. Li X, Shen CR, Liao JC (2014) Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynth Res 120:301–310CrossRefPubMedGoogle Scholar
  27. Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304CrossRefPubMedGoogle Scholar
  28. Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79CrossRefPubMedGoogle Scholar
  30. McAnulty MJ, Poosarla VG, Li J, Soo VW, Zhu F, Wood TK (2017) Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnol Bioeng 114:852–861CrossRefPubMedGoogle Scholar
  31. Mehta PK, Mishra S, Ghose TK (1987) Methanol accumulation by resting cells of Methylosinus trichosporium. J Gen Appl Microbiol 33:221–229CrossRefGoogle Scholar
  32. Namakoshi K, Nakajima T, Yoshikawa K, Toya Y, Shimizu H (2016) Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803. J Biotechnol 239:13–19CrossRefPubMedGoogle Scholar
  33. Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110:1249–1254CrossRefPubMedPubMedCentralGoogle Scholar
  34. Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J, Wilkins MR, Huhnke RL (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190:114–121CrossRefPubMedGoogle Scholar
  35. Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C (2011) The production of the sesquiterpene beta-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J Plant Physiol 168:848–852CrossRefPubMedGoogle Scholar
  36. Savakis PE, Angermayr SA, Hellingwerf KJ (2013) Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab Eng 20:121–130CrossRefPubMedGoogle Scholar
  37. Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728CrossRefPubMedPubMedCentralGoogle Scholar
  38. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the Methanotrophs add value? Environ Sci Technol 49:4001–4018CrossRefPubMedGoogle Scholar
  39. Tao L, Sedkova N, Yao H, Ye RW, Sharpe PL, Cheng Q (2006) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74:625CrossRefPubMedGoogle Scholar
  40. Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5:e01636-14CrossRefPubMedPubMedCentralGoogle Scholar
  41. Varman AM, Xiao Y, Pakrasi HB, Tang YJ (2013) Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl Environ Microbiol 79:908–914CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ye RW, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J Ind Microbiol Biotechnol 34:289CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Agriculture and Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus)Gyeongsang National UniversityJinjuKorea
  2. 2.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations