Advertisement

Synthetic Biology for Biofuels in Saccharomyces cerevisiae

  • Wei Suong Teo
  • Yu Chyuan Heng
  • Binbin Chen
  • Hui Ling Lee
  • Niying Chua
  • Matthew Wook Chang
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The yeast Saccharomyces cerevisiae has crucial features to facilitate successful genetic engineering and industrial scale fermentations for producing drop-in biofuels. Short-chain alcohols, fatty acid derivatives, and isoprenoids are potential drop-in biofuels where their biosynthesis can help mitigate climate change while ensuring sustainability of energy supply. Here, we review the drop-in biofuel molecules that have been produced in engineered S. cerevisiae. Efforts to diversify and optimize biofuel production using synthetic biology and metabolic engineering approaches are discussed. Much improvement will be required to achieve commercial viability.

References

  1. Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S (2016) Metabolic engineering of Saccharomyces cerevisiae for linalool production. Biotechnol Lett 38:503–508CrossRefPubMedGoogle Scholar
  2. Asadollahi MA, Maury J, Moller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677CrossRefPubMedGoogle Scholar
  3. Avalos JL, Fink GR, Stephanopoulo SG (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335–341CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675CrossRefPubMedGoogle Scholar
  5. Behrendorff JB, Vickers CE, Chrysanthopoulos P, Nielsen LK (2013) 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microb Cell Factories 12:76CrossRefGoogle Scholar
  6. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7:71–86CrossRefPubMedGoogle Scholar
  7. Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 6:1–12CrossRefGoogle Scholar
  8. Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5:1–16CrossRefGoogle Scholar
  9. Buijs NA, Zhou YJ, Siewers V, Nielsen J (2015) Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 112:1275–1279CrossRefPubMedGoogle Scholar
  10. Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ (2016) Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant seco-iridoids. ACS Synth Biol 5:405–414CrossRefPubMedGoogle Scholar
  11. Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen B, Lee DY, Chang MW (2015) Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab Eng 31:53–61CrossRefPubMedGoogle Scholar
  13. de Jong BW, Shi S, Siewers V, Nielsen J (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Factories 13:1–10CrossRefGoogle Scholar
  14. de Jong BW, Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J (2015) Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42:477–486CrossRefPubMedGoogle Scholar
  15. Deng Y, Sun M, Xu S, Zhou J (2016) Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. J Appl Microbiol 121:187–195CrossRefPubMedGoogle Scholar
  16. Eriksen DT, Hamedirad M, Yuan Y, Zhao H (2015) Orthogonal fatty acid biosynthetic pathway improves fatty acid ethyl ester production in Saccharomyces cerevisiae. ACS Synth Biol 4:808–814CrossRefPubMedGoogle Scholar
  17. Faulkner A, Chen X, Rush J, Horazdovsky B, Waechter CJ, Carman GM, Sternweis PC (1999) The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem 274:14831–14837CrossRefPubMedGoogle Scholar
  18. Feng X, Lian J, Zhao H (2015) Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 27:10–19CrossRefPubMedGoogle Scholar
  19. Fischer MJ, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892CrossRefPubMedGoogle Scholar
  20. Foo JL, Susanto AV, Keasling JD, Leong SS, Chang MW (2015) Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng 114:232–237Google Scholar
  21. Generoso WC, Schadeweg V, Oreb M, Boles E (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33:1–7CrossRefPubMedGoogle Scholar
  22. Ghiaci P, Norbeck J, Larsson C (2014) 2-butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system. PLoS ONE 9:e102774CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gupta P, Phulara SC (2015) Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol 119:605–619CrossRefPubMedGoogle Scholar
  24. Hazelwood LA, Daeran J-M, Van Maris AJA, JT P, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266CrossRefPubMedPubMedCentralGoogle Scholar
  25. Herrero O, Ramon D, Orejas M (2008) Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng 10:78–86CrossRefPubMedGoogle Scholar
  26. Hong SY, Zurbriggen AS, Melis A (2012) Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol 113:52–65CrossRefPubMedGoogle Scholar
  27. Ida K, Ishii J, Matsuda F, Kondo T, Kondo A (2015) Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae. Microb Cell Factories 14:1–9CrossRefGoogle Scholar
  28. Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM (2011) Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Factories 10:1–18CrossRefGoogle Scholar
  29. Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 3:298–306CrossRefPubMedGoogle Scholar
  30. Jensen MK, Keasling JD (2014) Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res 15:1–10Google Scholar
  31. Jin Z, Wong A, Foo JL, Ng J, Cao YX, Chang MW, Yuan YJ (2016) Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnol Bioeng 113:842–851CrossRefPubMedGoogle Scholar
  32. Jongedijk E, Cankar K, Ranzijn J, Van Der Krol S, Bouwmeester H, Beekwilder J (2015) Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast 32:159–171PubMedGoogle Scholar
  33. Kalscheuer R, Luftmann H, Steinbuchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kirby J, Nishimoto M, Chow RW, Pasumarthi VN, Chan R, Chan LJ, Petzold CJ, Keasling JD (2014) Use of nonionic surfactants for improvement of terpene production in Saccharomyces cerevisiae. Appl Environ Microbiol 80:6685–6693CrossRefPubMedPubMedCentralGoogle Scholar
  35. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070CrossRefGoogle Scholar
  36. Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159:32–37CrossRefPubMedGoogle Scholar
  37. Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40:1051–1056CrossRefPubMedGoogle Scholar
  38. Lee WH, Seo SO, Bae YH, NAN H, Jin YS, Seo JH (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35:1467–1475CrossRefPubMedGoogle Scholar
  39. Lian J, Zhao H (2015) Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 4:332–341CrossRefPubMedGoogle Scholar
  40. Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149CrossRefPubMedGoogle Scholar
  41. Liu J, Zhang W, Du G, Chen J, Zhou J (2013) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol 168:446–451CrossRefPubMedGoogle Scholar
  42. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136CrossRefPubMedGoogle Scholar
  43. Matsuda F, Kondo T, Ida K, Tezuka H, Ishii J, Kondo A (2012) Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 76:2139–2141CrossRefPubMedGoogle Scholar
  44. Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A (2013) Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Factories 12:119–119CrossRefGoogle Scholar
  45. Meylemans HA, Quintana RL, Goldsmith BR, Harvey BG (2011) Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels. ChemSusChem 4:465–469CrossRefPubMedGoogle Scholar
  46. Millis JR, Maurina-Brunker J (2004) Production of farnesol and geranylgeraniol. US Patent 6689593 B2Google Scholar
  47. Milne N, Wahl SA, Van Maris AJA, Pronk JT, Daran JM (2016) Excessive by-product formation: a key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metab Eng Commun 3:39–51CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845CrossRefPubMedGoogle Scholar
  49. Oswald M, Fischer M, Dirninger N, Karst F (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7:413–421CrossRefPubMedGoogle Scholar
  50. Ozaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183CrossRefPubMedGoogle Scholar
  51. Pardo E, Rico J, Gil JV, Orejas M (2015) De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microb Cell Factories 14:136CrossRefGoogle Scholar
  52. Park SH, Kim S, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98:9139–9147CrossRefPubMedGoogle Scholar
  53. Park S-H, Kim S, Hahn J-S (2016) Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier. Appl Microbiol Biotechnol 100:7591–7598CrossRefPubMedGoogle Scholar
  54. Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483CrossRefPubMedPubMedCentralGoogle Scholar
  55. Renninger NS, Mcphee DJ (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US Patent 7399323 B2Google Scholar
  56. Renninger NS, Mcphee DJ (2010) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US Patent 7846222 B2Google Scholar
  57. Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76:6449–6454CrossRefPubMedPubMedCentralGoogle Scholar
  58. Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113CrossRefPubMedGoogle Scholar
  59. Ryder JA (2012) Jet fuel compositions and methods of making and using same. US Patent 8106247 B2Google Scholar
  60. Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng 14:91–103CrossRefPubMedGoogle Scholar
  61. Schadeweg V, Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sheng J, Stevens J, Feng X (2016) Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci Report 6:26884CrossRefGoogle Scholar
  63. Shi S, Valle-Rodriguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shi S, Chen Y, Siewers V, Nielsen J (2014a) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:e01130–e01114PubMedPubMedCentralGoogle Scholar
  65. Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2014b) Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng 111:1740–1747CrossRefPubMedGoogle Scholar
  66. Shi S, Si T, Liu Z, Zhang H, Ang EL, Zhao H (2016) Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Sci Report 6:25675CrossRefGoogle Scholar
  67. Si T, Luo Y, Xiao H, Zhao H (2014) Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng 22:60–68CrossRefPubMedGoogle Scholar
  68. Song L (2006) A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol. Appl Biochem Biotechnol 128:149–158CrossRefPubMedGoogle Scholar
  69. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Factories 7:36CrossRefGoogle Scholar
  70. Sun M, Liu J, Du G, Zhou J, Chen J (2013) Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao = Chin J Biotechnol 29:751–759Google Scholar
  71. Takahashi S, Yeo Y, Greenhagen BT, Mcmullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tang X, Chen W (2015) Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 112:386–392CrossRefPubMedGoogle Scholar
  73. Teo WS, Ling H, Yu A-Q, Chang MW (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8:1–9CrossRefGoogle Scholar
  74. Thompson RA, Trinh CT (2014) Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol Bioeng 111:2200–2208CrossRefPubMedGoogle Scholar
  75. Tippmann S, Scalcinati G, Siewers V, Nielsen J (2016) Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113:72–81CrossRefPubMedGoogle Scholar
  76. Valle-Rodríguez JO, Shi S, Siewers V, Nielsen J (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energy 115:226–232CrossRefGoogle Scholar
  77. Williams TC, Pretorius IS, Paulsen IT (2016) Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol 34:371–381CrossRefPubMedGoogle Scholar
  78. Yu K, Jung J, Kim SW, Park C, Han S (2012) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109:110–115CrossRefPubMedGoogle Scholar
  79. Yuan J, Ching CB (2015) Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth Biol 4:23–31CrossRefPubMedGoogle Scholar
  80. Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8CrossRefPubMedGoogle Scholar
  81. Zhao J, Bao X, LI C, Shen Y, Hou J (2016) Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:4561–4571CrossRefPubMedGoogle Scholar
  82. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhuang X, Chappell J (2015) Building terpene production platforms in yeast. Biotechnol Bioeng 112:1854–1864CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Wei Suong Teo
    • 1
    • 3
  • Yu Chyuan Heng
    • 1
    • 2
  • Binbin Chen
    • 1
    • 3
  • Hui Ling Lee
    • 1
    • 3
  • Niying Chua
    • 1
    • 3
  • Matthew Wook Chang
    • 1
    • 3
  1. 1.Department of Biochemistry, Yong Loo Lin School of Medicine, and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
  2. 2.Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
  3. 3.School of Life Sciences and Chemical TechnologyNgee Ann PolytechnicSingaporeSingapore

Personalised recommendations