Advertisement

Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria

  • Christopher R. Mehrer
  • Nestor J. Hernández Lozada
  • Rung-Yi Lai
  • Brian F. Pfleger
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Metabolic engineering provides a powerful set of tools to engineer organisms such as bacteria, fungi, and plants to produce chemicals of interest. Fatty acid metabolism enables the sustainable production of many oleochemicals used as fuels, materials, and consumer products. In this chapter, we describe the biochemical pathways and metabolic engineering strategies that have been employed in bacteria to produce fatty acids and their related oleochemical products, such as alkanes, olefins, ketones, esters, alcohols, and polyesters. While microbial oleochemical production is promising, significant work remains to address the metabolic, physiological, and process engineering barriers that obstruct economic commercial deployment.

References

  1. Agnew DE, Stevermer AK, Youngquist JT, Pfleger BF (2012) Engineering Escherichia coli for production of C12-C14 polyhydroxyalkanoate from glucose. Metab Eng 14:705–713.  https://doi.org/10.1016/j.ymben.2012.08.003 CrossRefPubMedGoogle Scholar
  2. Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci USA 110:87–92.  https://doi.org/10.1073/pnas.1216516110 CrossRefPubMedGoogle Scholar
  3. Atsumi S, Cann AF, Connor MR et al (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311.  https://doi.org/10.1016/j.ymben.2007.08.003 CrossRefPubMedGoogle Scholar
  4. Belcher J, McLean KJ, Matthews S et al (2014) Structure and biochemical properties of the alkene producing cytochrome p450 OleTJE (CYP152l1) from the jeotgalicoccus sp. 8456 bacterium. J Biol Chem 289:6535–6550.  https://doi.org/10.1074/jbc.M113.527325 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beller HR, Goh E-B, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in micrococcus luteus. Appl Environ Microbiol 76:1212–1223.  https://doi.org/10.1128/AEM.02312-09 CrossRefPubMedGoogle Scholar
  6. Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91. doi:10.1146/annurev.cellbio.042308.113414CrossRefPubMedGoogle Scholar
  7. Bentley GJ, Jiang W, Guamán LP et al (2016) Engineering Escherichia coli to produce branched-chain fatty acids in high percentages. Metab Eng 38:148–158.  https://doi.org/10.1016/j.ymben.2016.07.003 CrossRefPubMedGoogle Scholar
  8. Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227.  https://doi.org/10.1038/nchembio.537 CrossRefPubMedGoogle Scholar
  9. Bowen CH, Bonin J, Kogler A, et al. (2016) Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and α,ω-dicarboxylic acids. ACS Synth Biol 5:200–206.  https://doi.org/10.1021/acssynbio.5b00201
  10. Buist PH (2007) Exotic biomodification of fatty acids. Nat Prod Rep 24:1110–1127.  https://doi.org/10.1039/b508584p CrossRefPubMedGoogle Scholar
  11. Cantu DC, Chen Y, Lemons ML, Reilly PJ (2011) ThYme: a database for thioester-active enzymes. Nucleic Acids Res 39:D342–D346.  https://doi.org/10.1093/nar/gkq1072 CrossRefPubMedGoogle Scholar
  12. Cheong S, Clomburg JM, Gonzalez R (2016) Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat Biotechnol.  https://doi.org/10.1038/nbt.3505 Google Scholar
  13. Cho H, Cronan JE (1995) Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem 270:4216–4219CrossRefPubMedGoogle Scholar
  14. Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574.  https://doi.org/10.1038/nature12536 CrossRefPubMedGoogle Scholar
  15. Choi K-HHK, Heath RJ, Rock CO (2000) β -ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-achain fatty acid biosynthesis. J Bacteriol 182:365–370.  https://doi.org/10.1128/JB.182.2.365-370.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cintolesi A, Clomburg JM, Gonzalez R (2014) In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C≥4) products. Metab Eng 23:100–115.  https://doi.org/10.1016/j.ymben.2014.02.011 CrossRefPubMedGoogle Scholar
  17. Clomburg JM, Vick JE, Blankschien MD et al (2012) A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 1:541–554.  https://doi.org/10.1021/sb3000782 CrossRefPubMedGoogle Scholar
  18. Cronan JE (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205.  https://doi.org/10.1016/S1369-5274(02)00297-7 CrossRefPubMedGoogle Scholar
  19. Cronan JE Jr, Rock CO (2008) Biosynthesis of membrane lipids. EcoSal Plus.  https://doi.org/10.1128/ecosalplus.3.6.4 Google Scholar
  20. Cummings M, Breitling R, Takano E (2014) Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol Lett 351:116–125. doi:10.1111/1574-6968.12365CrossRefPubMedPubMedCentralGoogle Scholar
  21. Davies HM, Anderson L, Fan C, Hawkins DJ (1991) Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch Biochem Biophys 290:37–45.  https://doi.org/10.1016/0003-9861(91)90588-A CrossRefPubMedGoogle Scholar
  22. Davis MS, Solbiati J, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598.  https://doi.org/10.1074/jbc.M004756200 CrossRefPubMedGoogle Scholar
  23. Dekishima Y, Lan EI, Shen CR et al (2011) Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 133:11399–11401CrossRefPubMedGoogle Scholar
  24. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359.  https://doi.org/10.1038/nature10333 CrossRefPubMedGoogle Scholar
  25. Dunlop MJ, Dossani ZY, Szmidt HL et al (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487.  https://doi.org/10.1038/msb.2011.21 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fontaine L, Meynial-Salles I, Girbal L et al (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830.  https://doi.org/10.1128/JB.184.3.821 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Garg S, Rizhsky L, Jin H et al (2016) Microbial production of bi-functional molecules by diversification of the fatty acid pathway. Metab Eng 35:9–20.  https://doi.org/10.1016/j.ymben.2016.01.003 CrossRefPubMedGoogle Scholar
  28. Goh EB, Baidoo EEK, Keasling JD, Beller HR (2012) Engineering of bacterial methyl ketone synthesis for biofuels. Appl Environ Microbiol 78:70–80.  https://doi.org/10.1128/AEM.06785-11 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goh E-B, Baidoo EEK, Burd H et al (2014) Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metab Eng 26:67–76.  https://doi.org/10.1016/j.ymben.2014.09.003 CrossRefPubMedGoogle Scholar
  30. He L, Xiao Y, Gebreselassie N et al (2014) Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 111:575–585. doi:10.1002/bit.25124CrossRefPubMedGoogle Scholar
  31. Heath RJ, Rock CO (2002) The Claisen condensation in biology. Nat Prod Rep 19:581–596.  https://doi.org/10.1039/b110221b CrossRefPubMedGoogle Scholar
  32. Hoffmeister M, Piotrowski M, Nowitzki U, Martin W (2005) Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 280:4329–4338.  https://doi.org/10.1074/jbc.M411010200 CrossRefPubMedGoogle Scholar
  33. Hom L, Trinh N, Alibhai M (2010) Methods and compositions related to thioesterase enzymes. US Patent Application US20100154293 A1Google Scholar
  34. Javidpour P, Deutsch S, Mutalik VK et al (2016) Investigation of proposed ladderane biosynthetic genes from anammox bacteria by heterologous expression in E. coli. PLoS One 11:1–21.  https://doi.org/10.1371/journal.pone.0151087 CrossRefGoogle Scholar
  35. Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683.  https://doi.org/10.1111/j.1365-313X.2008.03467.x CrossRefPubMedGoogle Scholar
  36. Jing F, Cantu DC, Tvaruzkova J et al (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44.  https://doi.org/10.1186/1471-2091-12-44 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jones CM, Hernández Lozada NJ, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99:9381–9393.  https://doi.org/10.1007/s00253-015-6963-9 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kallio P, Pasztor A, Thiel K et al (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5:4731.  https://doi.org/10.1038/ncomms5731 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kim S, Clomburg JM, Gonzalez R (2015) Synthesis of medium-chain length (C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia coli. J Ind Microbiol Biotechnol 42:465–475.  https://doi.org/10.1007/s10295-015-1589-6 CrossRefPubMedGoogle Scholar
  40. Kirby J, Keasling JD (2008) Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep 25:656–661.  https://doi.org/10.1039/b802939c CrossRefPubMedGoogle Scholar
  41. Kunjapur AM, Prather KLJ (2015) Microbial engineering for aldehyde synthesis. Appl Environ Microbiol 81:1892–1901.  https://doi.org/10.1128/AEM.03319-14 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727.  https://doi.org/10.1016/j.pbi.2009.09.009 CrossRefPubMedGoogle Scholar
  43. Lan EI, Dekishima Y, Chuang DS, Liao JC (2013) Metabolic engineering of 2-pentanone synthesis in Escherichia coli. AIChE J 59:3167–3175.  https://doi.org/10.1002/aic.14086 CrossRefGoogle Scholar
  44. Lee SH, Stephens JL, Paul KS, Englund PT (2006) Fatty acid synthesis by elongases in trypanosomes. Cell 126:691–699.  https://doi.org/10.1016/j.cell.2006.06.045 CrossRefPubMedGoogle Scholar
  45. Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667.  https://doi.org/10.1016/j.tibtech.2012.09.006 CrossRefPubMedGoogle Scholar
  46. Lennen RM, Braden DJ, West RM et al (2010) A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106:193–202.  https://doi.org/10.1002/bit.22660 CrossRefPubMedGoogle Scholar
  47. Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2013) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144.  https://doi.org/10.1128/JB.01477-12 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Li N, Nørgaard H, Warui DM et al (2011) Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. J Am Chem Soc 133:6158–6161.  https://doi.org/10.1021/ja2013517 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Liu A, Tan X, Yao L, Lu X (2013a) Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases. Appl Microbiol Biotechnol 97:7061–7071.  https://doi.org/10.1007/s00253-013-5027-2 CrossRefPubMedGoogle Scholar
  50. Liu L, Redden H, Alper HS (2013b) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24:1023–1030.  https://doi.org/10.1016/j.copbio.2013.03.005 CrossRefPubMedGoogle Scholar
  51. Liu R, Zhu F, Lu L et al (2014) Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng 22:10–21.  https://doi.org/10.1016/j.ymben.2013.12.004 CrossRefPubMedGoogle Scholar
  52. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647.  https://doi.org/10.1016/j.copbio.2011.01.011 CrossRefPubMedGoogle Scholar
  53. Machado HB, Dekishima Y, Luo H et al (2012) A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng 14:504–511.  https://doi.org/10.1016/j.ymben.2012.07.002 CrossRefPubMedGoogle Scholar
  54. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3- hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  55. Marcheschi RJ, Li H, Zhang K et al (2012) A synthetic recursive “+1” pathway for carbon chain elongation. ACS Chem Biol 7:689–697.  https://doi.org/10.1021/cb200313e CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mayer KM, Shanklin J (2007) Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC Plant Biol 7:1.  https://doi.org/10.1186/1471-2229-7-1 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in -Olefin biosynthesis in Synechococcus sp. Strain PCC 7002. Appl Environ Microbiol 77:4264–4267.  https://doi.org/10.1128/AEM.00467-11 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nawabi P, Bauer S, Kyrpides N, Lykidis A (2011) Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl Environ Microbiol 77:8052–8061.  https://doi.org/10.1128/AEM.05046-11 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pfleger BF, Gossing M, Nielsen J (2015) Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 29:1–11.  https://doi.org/10.1016/j.ymben.2015.01.009 CrossRefPubMedGoogle Scholar
  60. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501.  https://doi.org/10.1128/EC.00364-09 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ranganathan S, Tee TW, Chowdhury A et al (2012) An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng 14:687–704.  https://doi.org/10.1016/j.ymben.2012.08.008 CrossRefPubMedGoogle Scholar
  62. Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179:2969–2975CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10:259–265.  https://doi.org/10.1038/nchembio.1476 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Royce LA, Liu P, Stebbins MJ et al (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327.  https://doi.org/10.1007/s00253-013-5113-5 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rude MA, Baron TS, Brubaker S et al (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727.  https://doi.org/10.1128/AEM.02580-10 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rui Z, Li X, Zhu X et al (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci USA 111:10–15.  https://doi.org/10.1073/pnas.1419701112 CrossRefGoogle Scholar
  67. Rui Z, Harris NC, Zhu X et al (2015) Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal 5:7091–7094.  https://doi.org/10.1021/acscatal.5b01842 CrossRefGoogle Scholar
  68. Schirmer A, Rude MA, Li X et al (2010) Microbial biosynthesis of alkanes. Science 329:559–562.  https://doi.org/10.1126/science.1187936 CrossRefPubMedGoogle Scholar
  69. Shen CR, Lan EI, Dekishima Y et al (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915.  https://doi.org/10.1128/AEM.03034-10 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sheppard MJ, Kunjapur AM, Prather KLJJ (2016) Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 33:28–40.  https://doi.org/10.1016/j.ymben.2015.10.010 CrossRefPubMedGoogle Scholar
  71. Smith S, Tsai S-C (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24:1041.  https://doi.org/10.1039/b603600g CrossRefPubMedPubMedCentralGoogle Scholar
  72. Steen EJ, Kang Y, Bokinsky G et al (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562.  https://doi.org/10.1038/nature08721 CrossRefPubMedGoogle Scholar
  73. Tan Z, Yoon JM, Nielsen DR et al (2016) Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng 35:105–113.  https://doi.org/10.1016/j.ymben.2016.02.004 CrossRefPubMedGoogle Scholar
  74. Torella JP, Ford TJ, Kim SN et al (2013) Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc Natl Acad Sci USA 110:11290–11295.  https://doi.org/10.1073/pnas.1307129110 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium- chain acyl-acyl carrier protein thioesterase. J Bacteriol 176:7320–7327Google Scholar
  76. Voelker TA, Jones A, Cranmer AM et al (1997) Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114:669–677CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wahlen BD, Oswald WS, Seefeldt LC, Barney BM (2009) Purification, characterization, and potential bacterial Wax production role of an NADPH-dependent fatty aldehyde reductase from Marinobacter aquaeolei VT8. Appl Environ Microbiol 75:2758–2764.  https://doi.org/10.1128/AEM.02578-08 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wang Q, Tappel RC, Zhu C, Nomura CT (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78:519–527.  https://doi.org/10.1128/AEM.07020-11 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Weber AL (1991) Origin of fatty acid synthesis: thermodynamics and kinetics of reaction pathways. J Mol Evol 32:93–100CrossRefPubMedGoogle Scholar
  80. Willis RM, Wahlen BD, Seefeldt LC, Barney BM (2011) Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry 50:10550–10558.  https://doi.org/10.1021/bi2008646 CrossRefPubMedGoogle Scholar
  81. Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288.  https://doi.org/10.1146/annurev-chembioeng-061312-103312 CrossRefPubMedGoogle Scholar
  82. Wu H, San K-Y (2014) Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnol Bioeng 111:2209–2219.  https://doi.org/10.1002/bit.25296 CrossRefPubMedGoogle Scholar
  83. Youngquist JT, Schumacher MH, Rose JP et al (2013) Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab Eng 20:177–186CrossRefPubMedGoogle Scholar
  84. Yu X, Liu T, Zhu F, Khosla C (2011) In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci 108:18643–18648.  https://doi.org/10.1073/pnas.1110852108 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233.  https://doi.org/10.1038/nrmicro1839 CrossRefPubMedGoogle Scholar
  86. Zhang Y-M, Rock CO (2009) Transcriptional regulation in bacterial membrane lipid synthesis. J Lipid Res 50(Suppl):S115–S119.  https://doi.org/10.1194/jlr.R800046-JLR200 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhang F, Carothers JM, Keasling JD (2012a) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359.  https://doi.org/10.1038/nbt.2149 CrossRefPubMedGoogle Scholar
  88. Zhang F, Ouellet M, Batth TS et al (2012b) Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 14:653–660.  https://doi.org/10.1016/j.ymben.2012.08.009 CrossRefPubMedGoogle Scholar
  89. Zheng Y-N, Li L-L, Liu Q et al (2012) Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Factories 11:65.  https://doi.org/10.1186/1475-2859-11-65 CrossRefGoogle Scholar
  90. Zhuang Q, Wang Q, Liang Q, Qi Q (2014) Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 24:78–86.  https://doi.org/10.1016/j.ymben.2014.05.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Christopher R. Mehrer
    • 1
  • Nestor J. Hernández Lozada
    • 1
  • Rung-Yi Lai
    • 1
  • Brian F. Pfleger
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations