Applications of Microbial Biopolymers in Display Technology

  • Fabian B. H. Rehm
  • Katrin Grage
  • Bernd H. A. Rehm
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Microorganisms produce a variety of different polymers such as polyamides, polysaccharides, and polyesters. The polyesters, the polyhydroxyalkanoates (PHAs), are the most extensively studied polymers in regard to their use in display technology. The material properties of bacterial PHAs in combination with their biocompatibility and biodegradability make them attractive substrates for use in display technology applications. By translationally fusing bioactive molecules to a gene encoding a PHA-binding domain, the appropriate functionalization for a given application can be achieved such that the need for chemical immobilization is circumvented. By separately extracting and processing the biopolymer, using it to coat a surface, and then treating this surface with the fusion proteins, surface functionalization for immunodiagnostic microarray or tissue engineering applications can be accomplished. Conversely, by expressing the fusion protein directly in the PHA-producing organisms, one-step production of functionalized beads can be achieved. Such beads have been demonstrated in diverse applications, including fluorescence-activated cell sorting, enzyme-linked immunosorbent assays, microarrays, diagnostic skin test for tuberculosis, vaccines, protein purification, and affinity bioseparation.


  1. Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11(1):19–27CrossRefGoogle Scholar
  2. Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12(2):102–105CrossRefPubMedGoogle Scholar
  3. Atwood JA, Rehm BH (2009) Protein engineering towards biotechnological production of bifunctional polyester beads. Biotechnol Lett 31(1):131–137CrossRefPubMedGoogle Scholar
  4. Bäckström BT, Brockelbank JA, Rehm BH (2007) Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnol 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  5. Banki MR, Gerngross TU, Wood DW (2005) Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 14(6):1387–1395CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barnard GC, McCool JD, Wood DW, Gerngross TU (2005) Integrated recombinant protein expression and purification platform based on Ralstonia eutropha. Appl Environ Microbiol 71(10):5735–5742CrossRefPubMedPubMedCentralGoogle Scholar
  7. Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grutter MG, Pluckthun A (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22(5):575–582CrossRefPubMedGoogle Scholar
  8. Brockelbank JA, Peters V, Rehm BH (2006) Recombinant Escherichia coli strain produces a ZZ domain displaying biopolyester granules suitable for immunoglobulin G purification. Appl Environ Microbiol 72(11):7394–7397CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen S, Parlane NA, Lee J, Wedlock DN, Buddle BM, Rehm BHA (2014) New skin test for detection of bovine tuberculosis on the basis of antigen-displaying polyester inclusions produced by recombinant Escherichia coli. Appl Environ Microbiol 80(8):2526–2535CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31(34):8921–8930CrossRefPubMedGoogle Scholar
  11. Dong CL, Li SY, Wang Y, Dong Y, Tang JZ, Chen JC, Chen GQ (2012) The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) polypeptide. Biomaterials 33(9):2593–2599CrossRefPubMedGoogle Scholar
  12. Geng Y, Wang S, Qi Q (2010) Expression of active recombinant human tissue-type plasminogen activator by using in vivo polyhydroxybutyrate granule display. Appl Environ Microbiol 76(21):7226–7230CrossRefPubMedPubMedCentralGoogle Scholar
  13. Grage K, Rehm BH (2008) In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner. Bioconjug Chem 19(1):254–262CrossRefPubMedGoogle Scholar
  14. Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10(4):660–669CrossRefPubMedGoogle Scholar
  15. Grage K, Peters V, Rehm BH (2011) Recombinant protein production by in vivo polymer inclusion display. Appl Environ Microbiol 77(18):6706–6709CrossRefPubMedPubMedCentralGoogle Scholar
  16. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hay ID, Du J, Reyes PR, Rehm BH (2015a) In vivo polyester immobilized sortase for tagless protein purification. Microb Cell Factories 14(1):190CrossRefGoogle Scholar
  18. Hay ID, Du J, Burr N, Rehm BH (2015b) Bioengineering of bacteria to assemble custom-made polyester affinity resins. Appl Environ Microbiol 81(1):282–291CrossRefPubMedGoogle Scholar
  19. Hezayen FF, Steinbuchel A, Rehm BH (2002) Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56. Arch Biochem Biophys 403(2):284–291CrossRefPubMedGoogle Scholar
  20. Hooks DO, Rehm BHA (2015) Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions. Appl Microbiol Biotechnol 99(19):8045–8053CrossRefPubMedGoogle Scholar
  21. Jahns AC, Rehm BH (2009) Tolerance of the Ralstonia eutropha class I polyhydroxyalkanoate synthase for translational fusions to its C terminus reveals a new mode of functional display. Appl Environ Microbiol 75(17):5461–5466CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191(10):3195–3202CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21(1):45–52CrossRefPubMedGoogle Scholar
  24. Lee SY, Yim KS, Chang HN, Chang YK (1994) Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. J Biotechnol 32(2):203–211CrossRefPubMedGoogle Scholar
  25. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8CrossRefPubMedGoogle Scholar
  26. Lewis JG, Rehm BHA (2009) ZZ polyester beads: an efficient and simple method for purifying IgG from mouse hybridoma supernatants. J Immunol Methods 346(1–2):71–74CrossRefPubMedGoogle Scholar
  27. Li JA, Shang GG, You ML, Peng SW, Wang ZH, Wu HN, Chen GQ (2011) Endotoxin removing method based on lipopolysaccharide binding protein and polyhydroxyalkanoate binding protein PhaP. Biomacromolecules 12(3):602–608CrossRefPubMedGoogle Scholar
  28. Mao HY (2004) A self-cleavable sortase fusion for one-step purification of free recombinant proteins. Protein Expr Purif 37(1):253–263CrossRefPubMedGoogle Scholar
  29. Martineau P, Jones P, Winter G (1998) Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol 280(1):117–127CrossRefPubMedGoogle Scholar
  30. Martinez-Donato G, Piniella B, Aguilar D, Olivera S, Perez A, Castanedo Y, Alvarez-Lajonchere L, Duenas-Carrera S, Lee JW, Burr N, Gonzalez-Miro M, Rehm BH (2016) Protective T cell and antibody immune responses against hepatitis C virus achieved using a biopolyester-bead-based vaccine delivery system. Clin Vaccine Immunol 23(4):370–378CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mifune J, Grage K, Rehm BH (2009) Production of functionalized biopolyester granules by recombinant Lactococcus lactis. Appl Environ Microbiol 75(14):4668–4675CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moldes C, Garcia P, Garcia JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70(6):3205–3212CrossRefPubMedPubMedCentralGoogle Scholar
  33. Park JP, Lee KB, Lee SJ, Park TJ, Kim MG, Chung BH, Lee ZW, Choi IS, Lee SY (2005) Micropatterning proteins on polyhydroxyalkanoate substrates by using the substrate binding domain as a fusion partner. Biotechnol Bioeng 92(2):160–165CrossRefPubMedGoogle Scholar
  34. Park TJ, Park JP, Lee SJ, Hong HJ, Lee SY (2006) Polyhydroxyalkanoate chip for the specific immobilization of recombinant proteins and its applications in immunodiagnostics. Biotechnol Bioprocess Eng 11(2):173–177CrossRefGoogle Scholar
  35. Park TJ, Yoo SM, Keum KC, Lee SY (2009) Microarray of DNA-protein complexes on poly-3-hydroxybutyrate surface for pathogen detection. Anal Bioanal Chem 393(6–7):1639–1647CrossRefPubMedGoogle Scholar
  36. Parlane NA, Wedlock DN, Buddle BM, Rehm BH (2009) Bacterial polyester inclusions engineered to display vaccine candidate antigens for use as a novel class of safe and efficient vaccine delivery agents. Appl Environ Microbiol 75(24):7739–7744CrossRefPubMedPubMedCentralGoogle Scholar
  37. Parlane NA, Grage K, Lee JW, Buddle BM, Denis M, Rehm BH (2011) Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Appl Environ Microbiol 77(24):8516–8522CrossRefPubMedPubMedCentralGoogle Scholar
  38. Parlane NA, Grage K, Mifune J, Basaraba RJ, Wedlock DN, Rehm BH, Buddle BM (2012) Vaccines displaying mycobacterial proteins on biopolyester beads stimulate cellular immunity and induce protection against tuberculosis. Clin Vaccine Immunol 19(1):37–44CrossRefPubMedPubMedCentralGoogle Scholar
  39. Parlane NA, Chen S, Jones GJ, Vordermeier HM, Wedlock DN, Rehm BH, Buddle BM (2016) Display of antigens on polyester inclusions lowers the antigen concentration required for a bovine tuberculosis skin test. Clin Vaccine Immunol 23(1):19–26CrossRefPubMedPubMedCentralGoogle Scholar
  40. Peters V, Rehm BH (2006) In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase. Appl Environ Microbiol 72(3):1777–1783CrossRefPubMedPubMedCentralGoogle Scholar
  41. Peters V, Rehm BHA (2008) Protein engineering of streptavidin for in vivo assembly of streptavidin beads. J Biotechnol 134(3–4):266–274CrossRefPubMedGoogle Scholar
  42. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13(2):51–76PubMedGoogle Scholar
  43. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(Pt 1):15–33CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rehm BH (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28(4):207–213CrossRefPubMedGoogle Scholar
  45. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592CrossRefPubMedGoogle Scholar
  46. Schubert P, Steinbuchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shah RR, O’Hagan DT, Amiji MM, Brito LA (2014) The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond) 9(17):2671–2681CrossRefGoogle Scholar
  48. Steemson JD, Baake M, Rakonjac J, Arcus VL, Liddament MT (2014) Tracking molecular recognition at the atomic level with a new protein scaffold based on the OB-fold. PLoS One 9(1):e86050Google Scholar
  49. Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1993) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 10(3–4):347–350PubMedGoogle Scholar
  50. Stumpp MT, Binz HK, Amstutz P (2008) DARPins: a new generation of protein therapeutics. Drug Discov Today 13(15–16):695–701CrossRefPubMedGoogle Scholar
  51. Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352CrossRefPubMedGoogle Scholar
  52. Wang Z, Wu H, Chen J, Zhang J, Yao Y, Chen GQ (2008) A novel self-cleaving phasin tag for purification of recombinant proteins based on hydrophobic polyhydroxyalkanoate nanoparticles. Lab Chip 8(11):1957–1962CrossRefPubMedGoogle Scholar
  53. Wieczorek R, Pries A, Steinbuchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177(9):2425–2435CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wu S-C, Lia Y-K (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym 54(3–4):103–108CrossRefGoogle Scholar
  55. Xie H, Li J, Li L, Dong Y, Chen GQ, Chen KC (2013) Enhanced proliferation and differentiation of neural stem cells grown on PHA films coated with recombinant fusion proteins. Acta Biomater 9(8):7845–7854CrossRefPubMedGoogle Scholar
  56. Zahnd C, Amstutz P, Pluckthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4(3):269–279CrossRefPubMedGoogle Scholar
  57. Zhang S, Wang ZH, Chen GQ (2010) Microbial polyhydroxyalkanote synthesis repression protein PhaR as an affinity tag for recombinant protein purification. Microb Cell Factories 9:28CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Fabian B. H. Rehm
    • 1
  • Katrin Grage
    • 1
  • Bernd H. A. Rehm
    • 1
  1. 1.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations