Advanced Biodiesel and Biojet Fuels from Lignocellulosic Biomass

  • Tian Tian
  • Taek Soon Lee
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Global energy demands and environmental concerns have stimulated interest in renewable, carbon-neutral diesel and jet fuel from biomass. Lignocellulosic biomass is considered as a promising resource for the future bioindustry. The plant cell wall is a polymer network comprised largely of the sugar polymers such as cellulose and hemicellulose, and the polyphenolic lignin, and considerable efforts have been made toward the conversion of lignocellulose into fermentable sugars for their use in microbial fuel synthesis. Genetically engineered microbial hosts can utilize these sugars as a carbon source to biosynthesize a broad panel of bioproducts including fatty acid-, isoprenoid-, and alcohol-derived compounds, which can be used as precursors or directly as fungible alternatives to diesel and jet fuel. In this chapter, we review the principles of biofuel synthesis from biomass-derived sugar, summarize the promising technologies of biomass deconstruction and pathway engineering, and discuss the current applications of biodiesel and biojet fuels.



This work was part of the DOE Joint BioEnergy Institute ( supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.


  1. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRefPubMedGoogle Scholar
  2. Alibhai MF, Rude MA, Schirmer AW (2016) Methods and compositions for producing olefins. US Patent No 14/068,542Google Scholar
  3. Alonso-Gutierrez J, Kim EM, Batth TS, Cho N, Hu Q, Chan LJ, Petzold CJ, Hillson NJ, Adams PD, Keasling JD et al (2015) Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng 28:123–133CrossRefPubMedGoogle Scholar
  4. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefPubMedGoogle Scholar
  5. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35CrossRefPubMedGoogle Scholar
  6. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRefPubMedGoogle Scholar
  7. Baez A, Cho KM, Liao JC (2011) High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 90:1681–1690CrossRefPubMedGoogle Scholar
  8. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106CrossRefGoogle Scholar
  9. Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32:1508–1526CrossRefPubMedGoogle Scholar
  10. Bentley GJ, Jiang W, Guaman LP, Xiao Y, Zhang F (2016) Engineering Escherichia coli to produce branched-chain fatty acids in high percentages. Metab Eng 38:148–158CrossRefPubMedGoogle Scholar
  11. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA et al (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brennan TC, Turner CD, Kromer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522CrossRefPubMedGoogle Scholar
  14. Cardayre SB (2013) Metathesis transformations of microbially-produced fatty acids and fatty acid derivatives. US Patent No 13/444,579Google Scholar
  15. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen CT, Liao JC (2016) Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 363:1–13Google Scholar
  17. Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574CrossRefPubMedGoogle Scholar
  18. Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20:307–315CrossRefPubMedGoogle Scholar
  19. Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD et al (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31:1039–1046CrossRefPubMedGoogle Scholar
  20. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:1–11CrossRefGoogle Scholar
  21. Deng Y, Sun M, Xu S, Zhou J (2016) Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. J Appl Microbiol 121:187–195CrossRefPubMedGoogle Scholar
  22. Duan Y, Zhu Z, Cai K, Tan X, Lu X (2011) De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS One 6:1–7Google Scholar
  23. Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267CrossRefGoogle Scholar
  24. Felpeto-Santero C, Rojas A, Tortajada M, Galan B, Ramon D, Garcia JL (2015) Engineering alternative isobutanol production platforms. AMB Express 5:1–9CrossRefGoogle Scholar
  25. Fineran PC, Dy RL (2014) Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89CrossRefPubMedGoogle Scholar
  26. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381CrossRefPubMedGoogle Scholar
  27. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals – artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389PubMedGoogle Scholar
  28. Goh EB, Baidoo EE, Keasling JD, Beller HR (2012) Engineering of bacterial methyl ketone synthesis for biofuels. Appl Environ Microbiol 78:70–80CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goh EB, Baidoo EE, Burd H, Lee TS, Keasling JD, Beller HR (2014) Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metab Eng 26:67–76CrossRefPubMedGoogle Scholar
  30. Halfmann C, Gu L, Gibbons W, Zhou R (2014) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98:9869–9877CrossRefPubMedGoogle Scholar
  31. Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24:267–273CrossRefGoogle Scholar
  32. Harvey BG, Merriman WW, Koontz TA (2015) High-density renewable diesel and jet fuels prepared from multicyclic sesquiterpanes and a 1-hexene-derived synthetic paraffinic kerosene. Energy Fuel 29:2431–2436CrossRefGoogle Scholar
  33. Haushalter RW, Kim W, Chavkin TA, The L, Garber ME, Nhan M, Adams PD, Petzold CJ, Katz L, Keasling JD (2014) Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties. Metab Eng 26:111–118CrossRefPubMedGoogle Scholar
  34. Heggset EB, Syverud K, Øyaas K (2016) Novel pretreatment pathways for dissolution of lignocellulosic biomass based on ionic liquid and low temperature alkaline treatment. Biomass Bioenergy 93:194–200CrossRefGoogle Scholar
  35. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  36. Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzyme Res 04:44–55CrossRefGoogle Scholar
  37. Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRefPubMedGoogle Scholar
  38. Kang A, Lee TS (2015) Converting sugars to biofuels: ethanol and beyond. Bioengineering 2:184–203CrossRefPubMedPubMedCentralGoogle Scholar
  39. Keshk SMAS (2016) Cellulase application in enzymatic hydrolysis of biomass. pp 185–191Google Scholar
  40. Kim EM, Eom JH, Um Y, Kim Y, Woo HM (2015) Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J Agric Food Chem 63:4606–4612CrossRefPubMedGoogle Scholar
  41. Sherif M.A.S. Keshk (2016) Cellulase application in enzymatic hydrolysis of biomass. In: New and future developments in microbial biotechnology and bioengineering, 4th edition, Elsevier, Amsterdam, pp 185–191.CrossRefGoogle Scholar
  42. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  43. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563CrossRefPubMedGoogle Scholar
  44. Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35:1467–1475CrossRefPubMedGoogle Scholar
  45. Leferink NGH, Jervis AJ, Zebec Z, Toogood HS, Hay S, Takano E, Scrutton NS (2016) A ‘plug and play’ platform for the production of diverse monoterpene hydrocarbon scaffolds in Escherichia coli. ChemistrySelect 1:1893–1896CrossRefGoogle Scholar
  46. Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667CrossRefPubMedGoogle Scholar
  47. Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91:577–589CrossRefPubMedGoogle Scholar
  48. Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304CrossRefPubMedGoogle Scholar
  49. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467CrossRefGoogle Scholar
  50. Liu T, Khosla C (2010) Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet 44:53–69CrossRefPubMedGoogle Scholar
  51. Liu D, Xiao Y, Evans BS, Zhang F (2015) Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol 4:132–140CrossRefPubMedGoogle Scholar
  52. Markham KA, Alper HS (2015) Synthetic biology for specialty chemicals. Annu Rev Chem Biomol Eng 6:35–52CrossRefPubMedGoogle Scholar
  53. Martin V, Pitera D, Withers S, Newman J, Keasling J (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802CrossRefPubMedGoogle Scholar
  54. Meylemans HA, Quintana RL, Goldsmith BR, Harvey BG (2011) Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels. ChemSusChem 4:465–469CrossRefPubMedGoogle Scholar
  55. Meylemans HA, Quintana RL, Harvey BG (2012) Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 97:560–568CrossRefGoogle Scholar
  56. Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci 110:14592–14597CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009a) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845CrossRefPubMedGoogle Scholar
  58. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009b) Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli. Biosci Biotechnol Biochem 73:186–188CrossRefPubMedGoogle Scholar
  59. Ozaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183CrossRefPubMedGoogle Scholar
  60. Pasquini D, Pimenta MTB, Ferreira LH, Curvelo AAdS (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol–water mixtures and carbon dioxide at high pressures. J Supercrit Fluids 36:31–39Google Scholar
  61. Pearlson M, Wollersheim C, Hileman J (2013) A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels Bioprod Biorefin 7:89–96CrossRefGoogle Scholar
  62. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328CrossRefPubMedGoogle Scholar
  63. Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2015) Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol 4:393–399CrossRefPubMedGoogle Scholar
  64. Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76:6449–6454CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rottig A, Wenning L, Broker D, Steinbuchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733CrossRefPubMedGoogle Scholar
  66. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281CrossRefPubMedGoogle Scholar
  67. Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727CrossRefPubMedPubMedCentralGoogle Scholar
  68. Salihu A, Abbas O, Sallau AB, Alam MZ (2015) Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3 Biotech 5:1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefPubMedGoogle Scholar
  70. Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52:122–130Google Scholar
  71. Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562CrossRefPubMedGoogle Scholar
  72. Schirmer AW, Rude MA, Brubaker SA (2014) Methods and compositions for producing fatty alcohols and fatty aldehydes. US Patents No 13/552,522Google Scholar
  73. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRefPubMedGoogle Scholar
  74. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82CrossRefPubMedGoogle Scholar
  75. Sousa LD, Jin MJ, Chundawat SPS, Bokade V, Tang XY, Azarpira A, Lu FC, Avci U, Humpula J, Uppugundla N et al (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9:1215–1223CrossRefGoogle Scholar
  76. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562CrossRefPubMedGoogle Scholar
  77. Su H, Jiang J, Lu Q, Zhao Z, Xie T, Zhao H, Wang M (2015) Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock. Microb Cell Factories 14:1–14CrossRefGoogle Scholar
  78. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tashiro Y, Rodriguez GM, Atsumi S (2015) 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J Ind Microbiol Biotechnol 42:361–373CrossRefPubMedGoogle Scholar
  80. Taylor JD, Jenni MM, Peters MW (2010) Dehydration of fermented isobutanol for the production of renewable chemicals and fuels. Top Catal 53:1224–1230CrossRefGoogle Scholar
  81. Teo WS, Ling H, Yu AQ, Chang MW (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8:1–9CrossRefGoogle Scholar
  82. Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240CrossRefGoogle Scholar
  83. Uju, Goto M, Kamiya N (2016) Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass. Bioresour Technol 214:487–495Google Scholar
  84. van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492CrossRefPubMedPubMedCentralGoogle Scholar
  85. Vasheghani Farahani S, Kim Y-W, Schall CA (2016) A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass. Catal Today 269:2–8CrossRefGoogle Scholar
  86. Vasudevan PT, Briggs M (2008) Biodiesel production – current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430CrossRefPubMedGoogle Scholar
  87. Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700CrossRefPubMedGoogle Scholar
  88. Wang C, Yoon SH, Shah AA, Chung YR, Kim JY, Choi ES, Keasling JD, Kim SW (2010) Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol Bioeng 107:421–429.CrossRefPubMedGoogle Scholar
  89. Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW (2011) Metabolic engineering of Escherichia coli for alpha-farnesene production. Metab Eng 13:648–655CrossRefPubMedGoogle Scholar
  90. Wu X, McLaren J, Madl R, Wang D (2010) Biofuels from lignocellulosic biomass: innovations beyond bioethanol. In: Sustainable biotechnology. Springer, New York, pp 19–41Google Scholar
  91. Xiao Y, Bowen CH, Liu D, Zhang F (2016) Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12:339–344CrossRefPubMedGoogle Scholar
  92. Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111:11299–11304CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226CrossRefPubMedGoogle Scholar
  94. Yang X, Nambou K, Wei L, Hua Q (2016) Heterologous production of alpha-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresour Technol 216:1040–1048CrossRefPubMedGoogle Scholar
  95. Yu AQ, Juwono NK, Foo JL, Leong SS, Chang MW (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36–43CrossRefPubMedGoogle Scholar
  96. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359CrossRefPubMedGoogle Scholar
  97. Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRefPubMedGoogle Scholar
  98. Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Joint BioEnergy InstituteEmeryvilleUSA
  2. 2.Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations