Lipid-Containing Secondary Metabolites from Algae

  • J. G. Qin
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


As secondary metabolites, algal lipids are composed of fats, phospholipids, steroids, and waxes, which are functionally important for cell structure and energy storage. On average, lipids account for 20–40% of algal dry weight with a maximum of 85% in some algae, which exceeds the lipid content of most terrestrial plants. The range of potential applications of algal oils is very wide. Polyunsaturated fatty acids in algae could be an importance source for human and animal nutrition and biofuels. However, a viable commercial production of fatty acid needs further selection and screening of oleaginous species, improvement of strains by genetic manipulation, optimization of culture conditions, and development of efficient cultivation systems.


  1. Ahlgren G, Gustafsson IB, Boberg M (1992) Fatty-acid content and chemical-composition of fresh-water microalgae. J Phycol 28:37–50CrossRefGoogle Scholar
  2. Alonso DL, Belarbi EH, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471CrossRefPubMedGoogle Scholar
  3. Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279CrossRefPubMedGoogle Scholar
  4. Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 312–351Google Scholar
  5. Belarbi E-H, Molina GE, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym Microb Tech 26:516–529CrossRefGoogle Scholar
  6. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503CrossRefPubMedGoogle Scholar
  7. Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, pp 200–234Google Scholar
  8. Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, New YorkGoogle Scholar
  9. Chapman VJ, Chapman DJ (1980) Seaweeds and their uses. London: Chapman & Hall.CrossRefGoogle Scholar
  10. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  11. De Swaaf M, de Rijk T, Eggink G, Sijtsma L (1999) Optimisation of docosahexaenoic acid production in batch cultivation by Crypthecodinium cohnii. J Biotechnol 70:185–192CrossRefGoogle Scholar
  12. Dembitsky VM, Rozentsvet OA (1989) Diacylglyceryl-trimethylhomoserines and phospholipids of some green marine macrophytes. Phytochemistry 28:3341–3343CrossRefGoogle Scholar
  13. Dembitsky VM, Rozentsvet OA (1990) Phospholipid-composition of some marine red algae. Phytochemistry 29:3149–3152CrossRefGoogle Scholar
  14. Dijkstra A (2006) Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. Eur J Lipid Sci Tech 108:249–264CrossRefGoogle Scholar
  15. Gladu PK, Patterson GW, Wikfors GH, Smith BC (1995) Sterol, fatty-acid, and pigment characteristics of utex-2341, a marine eustigmatophyte identified previously as Chlorella minutissima (Chlorophyceae). J Phycol 31:774–777CrossRefGoogle Scholar
  16. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186CrossRefPubMedGoogle Scholar
  17. Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56CrossRefGoogle Scholar
  18. Henderson RJ, Sargent JR (1989) Lipid composition and biosynthesis in ageing cultures of the marine cryptomonad, Chroomonas salina. Phytochemistry 28:1355–1361CrossRefGoogle Scholar
  19. Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81:76–78CrossRefGoogle Scholar
  20. Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light dark cycles: 13–87 s. J Biotechnol 70:323–333CrossRefGoogle Scholar
  21. Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 40:651–654CrossRefGoogle Scholar
  22. Jiang Y, Fan KW, Wong RDY, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agr Food Chem 52:1196–1200CrossRefGoogle Scholar
  23. Jones AL, Harwood JL (1992) Lipid-composition of the brown-algae Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 31:3397–3403CrossRefGoogle Scholar
  24. Khotimchenko SV, Titlyanova TV (1996) Distribution of an amino acid-containing phospholipid in brown algae. Phytochemistry 41:1535–1537CrossRefGoogle Scholar
  25. Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J Appl Phycol 9:559–563Google Scholar
  26. Kulkarni M, Dalai A (2006) Waste cooking oil–an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913CrossRefGoogle Scholar
  27. Lewis T, Nichols P, McMeekin T (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587CrossRefPubMedGoogle Scholar
  28. Lombardi AT, Wangersky PJ (1991) Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar Ecol Prog Ser 77:39–47CrossRefGoogle Scholar
  29. Meireles L, Guedes A, Malcata F (2003) Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. J Agr Food Chem 51:2237–2241CrossRefGoogle Scholar
  30. Metting F (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489CrossRefGoogle Scholar
  31. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biot 66:486–496CrossRefGoogle Scholar
  32. Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D (1996) Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap islands. J Am Oil Chem Soc 73:1421–1426CrossRefGoogle Scholar
  33. Nichols PD, Jones GJ, De Leeuw JW, Jones RB (1984) The fatty acid and sterol composition of two marine dinoflagellates. Phytochemistry 23:1043–1047CrossRefGoogle Scholar
  34. Ono K, Miyatake K, Inui H, Kitaoka S, Nakano Y (1995) Wax ester production by anaerobic Euglena gracilis. J Mar Biotechnol 2:157–161Google Scholar
  35. Patterson GW, Tsitsa-Tzardis E, Wikfors GH, Gladu PK, Chitwood DJ, Harrison D (1993) Sterols of Tetraselmis (Prasinophyceae). Comp Biochem Phys 105B:253–256Google Scholar
  36. Qin JG (2008) Larval fish nutrition and rearing technologies: state of the art and future. In: Schwartz SH (ed) Aquaculture research trends. Nova Science Publishers, New York, pp 1–36Google Scholar
  37. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae. J Phycol 30:972–979CrossRefGoogle Scholar
  38. Reitan KI, Rainuzzo JR, Oie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221CrossRefGoogle Scholar
  39. Rzama A, Dufourc EJ, Arreguy B (1994) Sterols from green and blue-green-algae grown on reused waste-water. Phytochemistry 37:1625–1628CrossRefGoogle Scholar
  40. Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biot 64:146–153CrossRefGoogle Scholar
  41. Siron R, Giusti G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 50:95–100CrossRefGoogle Scholar
  42. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefPubMedGoogle Scholar
  43. Sukenik A, Livne A (1991) Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine prymnesiophyte Isochrysis galbana. Plant Cell Physiol 32:371–378CrossRefGoogle Scholar
  44. Tani Y, Okumura M, Li S (1987) Liquid wax ester production by Euglena gracilis. Agr Biol Chem 51:225–230Google Scholar
  45. Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24CrossRefPubMedGoogle Scholar
  46. Tsitsa-Tzardis E, Patterson GW, Wikfors GH, Gladu PK, Harrison D (1993) Sterols of Chaetoceros and Skeletonema. Lipids 28:465–467CrossRefGoogle Scholar
  47. Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294CrossRefPubMedGoogle Scholar
  48. Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yield of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1431CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations