Advertisement

Biotechnological Production and Significance of Triacylglycerols and Wax Esters

  • H. M. Alvarez
  • O. M. Herrero
  • M. P. Lanfranconi
  • R. A. Silva
  • M. S. Villalba
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Global fat, oil, and wax ester demand is forecasted to increase in the next years. Steadily growing biodiesel requirements will lead to an increased demand for vegetable oils, in combination with a constant rise in the consumption of vegetable oil as food and feed. This situation will prompt the use of alternative sources for the production of oils and wax esters during the next years. In this context, microorganisms (yeasts, fungi, microalgae, and bacteria) are receiving increasing attention as alternative oils and wax esters sources. The knowledge acquired during the last decade about the production of bacterial triacylglycerols (TAG) and wax esters (WE) and their fundamental aspects could provide a new production platform for oils. The applied potential of bacterial TAG and WE may be similar to that of vegetable sources, such as additives for feed, cosmetics, oleochemicals, lubricants, and other manufactured products. In addition, bacterial oils could be used for biofuel production. The development of an industrial and commercially significant process may depend on the optimization of engineered cells and the technological procedures. This chapter will focus on the potential biotechnological application of TAG and WE produced by bacteria.

References

  1. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefPubMedGoogle Scholar
  2. Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246CrossRefGoogle Scholar
  3. Barney BM, Ohlert JM, Timler JG, Lijewski AM (2015) Altering small and medium alcohol selectivity in the wax ester synthase. Appl Microbiol Biotechnol 99:9675–9684CrossRefPubMedGoogle Scholar
  4. Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 52:579–583Google Scholar
  5. Eberly JO, Ringelberg DB, Indest KJ (2013) Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 40:201–208CrossRefPubMedGoogle Scholar
  6. Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711CrossRefGoogle Scholar
  7. Herrero OM, Alvarez HM (2016) Whey as a renewable source for lipid production by Rhodococcus strains: physiology and genomics of lactose and galactose utilization. Eur J Lipid Sci Technol 118:262–272CrossRefGoogle Scholar
  8. Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79:3122–3125CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082CrossRefPubMedGoogle Scholar
  10. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536CrossRefPubMedGoogle Scholar
  11. Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218CrossRefPubMedGoogle Scholar
  12. Kurosawa K, Laser J, Sinskey AJ (2015) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8:76–89CrossRefPubMedPubMedCentralGoogle Scholar
  13. Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140:931–943CrossRefPubMedGoogle Scholar
  14. Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2016) Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 225:48–56CrossRefPubMedGoogle Scholar
  15. Silva RA, Grossi V, Alvarez HM (2007) Biodegradation of phytane (2,6,10,14-tetramethylhexadecane) and accumulation of related isoprenoid wax esters by Mycobacterium ratisbonense strain SD4 under nitrogen-starved conditions. FEMS Microbiol Lett 272:220–228CrossRefPubMedGoogle Scholar
  16. Stöveken T, Steinbüchel A (2008) Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed Eng 47:3688–3694CrossRefGoogle Scholar
  17. Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376CrossRefPubMedPubMedCentralGoogle Scholar
  18. Tao H, Guo D, Zhang Y, Deng Z, Liu T (2015) Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property. Biotechnol Biofuels 8:92–102CrossRefPubMedPubMedCentralGoogle Scholar
  19. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot scale. Appl Microbiol Biotechnol 55:547–555CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • H. M. Alvarez
    • 1
  • O. M. Herrero
    • 1
    • 2
  • M. P. Lanfranconi
    • 1
  • R. A. Silva
    • 1
  • M. S. Villalba
    • 1
    • 2
  1. 1.Bioscience Institute Patagonia (INBIOP), Faculty of Natural ScienceUniversity of Patagonia San Juan Bosco, CONICETComodoro RivadaviaArgentina
  2. 2.Oil M&SComodoro RivadaviaArgentina

Personalised recommendations