Evolving Enzymes for Biocatalysis

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

This chapter covers concepts developed for the directed evolution of enzymes. The principle strategy is given in comparison to rational protein design followed by a description of the most prominent methods for creation of mutant libraries. Screening and selection strategies to identify the best hits in these libraries are presented followed by several assays developed for a range of enzyme classes. Finally, selected examples for the successful application of evolutionary methods to optimize biocatalysts are given.

References

  1. Acker MG, Auld DS (2014) Considerations for the design and reporting of enzyme assays in high-throughput screening applications. Perspect Sci 1:56–73CrossRefGoogle Scholar
  2. Arnold FH, Georgiou G (eds) (2003a) Directed enzyme evolution: screening and selection methods. Humana Press, TotawaGoogle Scholar
  3. Arnold FH, Georgiou G (eds) (2003b) Directed evolution library creation: methods and protocols. Humana Press, TotawaGoogle Scholar
  4. Bartsch S, Kourist R, Bornscheuer UT (2008) Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew Chem Int Ed 47:1508–1511CrossRefGoogle Scholar
  5. Baumann M, Stürmer R, Bornscheuer UT (2001) A high-throughput-screening method for the identification of active and enantioselective hydrolases. Angew Chem Int Ed 40:4201–4204CrossRefGoogle Scholar
  6. Baxter S, Royer S, Grogan G, Brown F, Holt-Tiffin KE, Taylor IN, Fotheringham IG, Campopiano DJ (2012) An improved racemase/acylase biotransformation for the preparation of enantiomerically pure amino acids. J Am Chem Soc 134:19310–19313CrossRefPubMedGoogle Scholar
  7. Biles BD, Connolly BA (2004) Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res 32:e176CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bornscheuer UT (2016) Protein engineering: beating the odds. Nat Chem Biol 12:54–55CrossRefPubMedGoogle Scholar
  9. Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRefPubMedGoogle Scholar
  10. Brundiek H, Evitt AS, Kourist R, Bornscheuer UT (2012) Creation of a highly trans fatty acid selective lipase by protein engineering. Angew Chem Int Ed 51:412–414CrossRefGoogle Scholar
  11. Caldwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33CrossRefGoogle Scholar
  12. Chen B, Lim S, Kannan A, Alford SC, Sunden F, Herschlag D, Dimov IK, Baer TM, Cochran JR (2016) High-throughput analysis and protein engineering using microcapillary arrays. Nat Chem Biol 12:76–81CrossRefPubMedGoogle Scholar
  13. Colin P-Y, Kintses B, Gielen F, Miton CM, Fischer G, Mohamed MF, Hyvonen M, Morgavi DP, Janssen DB, Hollfelder F (2015) Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6.  https://doi.org/10.1038/ncomms10008
  14. Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44:1172–1239CrossRefPubMedGoogle Scholar
  15. Dombkowski AA, Sultana KZ, Craig DB (2014) Protein disulfide engineering. FEBS Lett 588:206–212CrossRefPubMedGoogle Scholar
  16. Dörr M, Fibinger MP, Last D, Schmidt S, Santos‐Aberturas J, Böttcher D, Hummel A, Vickers C, Voss M, Bornscheuer UT (2016) Fully automatized high throughput enzyme library screening using a robotic platform. Biotechnol Bioeng 113:1421–1432.  https://doi.org/10.1002/bit.25925 CrossRefPubMedGoogle Scholar
  17. Engström K, Nyhlen J, Sandström AG, Backväll JE (2010) Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters. J Am Chem Soc 132(20):7038–7042CrossRefPubMedGoogle Scholar
  18. Enoki J, Meisborn J, Müller A, Kourist R (2016) A multi-enzymatic cascade reaction for the stereoselective production of γ-oxyfunctionalyzed amino acids. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.00425
  19. Fernández‐Álvaro E, Snajdrova R, Jochens H, Davids T, Böttcher D, Bornscheuer UT (2011) A combination of in vivo selection and cell sorting for the identification of enantioselective biocatalysts. Angew Chem Int Ed 50:8584–8587CrossRefGoogle Scholar
  20. Fibla J, Gonzalezduarte R (1993) Colorimetric assay to determine alcohol-dehydrogenase activity. J Biochem Biophys Methods 26:87–93CrossRefPubMedGoogle Scholar
  21. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 25:338–344CrossRefPubMedGoogle Scholar
  22. Gassmeyer SK, Yoshikawa H, Enoki J, Hülsemann N, Stoll R, Miyamoto K, Kourist R (2015) STD NMR based protein engineering of the unique arylpropionate racemase AMDase G74C. ChemBioChem 16:1943–1949CrossRefGoogle Scholar
  23. Gassmeyer S, Wetzig J, Mügge C, Assmann M, Enoki J, Hilterhaus L, Zuhse R, Miyamoto K, Liese A, Kourist R (2016) Arylmalonate decarboxylase-catalyzed asymmetric synthesis of both enantiomers of optically pure flurbiprofen. ChemCatChem 8:916–921CrossRefGoogle Scholar
  24. Grognux J, Reymond JL (2004) Classifying enzymes from selectivity fingerprints. ChemBioChem 5:826–831CrossRefPubMedGoogle Scholar
  25. Heinze B, Kourist R, Fransson L, Hult K, Bornscheuer UT (2007) Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis. Protein Eng Des Sel 20:125–131CrossRefPubMedGoogle Scholar
  26. Heitman J, Sun S, James TY (2013) Evolution of fungal sexual reproduction. Mycologia 105:1–27CrossRefPubMedGoogle Scholar
  27. Henke E, Bornscheuer UT, Schmid RD, Pleiss J (2003) A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. ChemBioChem 4:485–493CrossRefPubMedGoogle Scholar
  28. Horsman GP, Liu AMF, Henke E, Bornscheuer UT, Kazlauskas RJ (2003) Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3-bromo-2-methyl propanoate and ethyl 3-phenylbutyrate. Chem Eur J 9:1933–1939CrossRefPubMedGoogle Scholar
  29. Ljima Y, Matoishi K, Terao Y, Doi N, Yanagawa H, Ohta H (2005) Inversion of enantioselectivity of asymmetric biocatalytic decarboxylation by site-directed mutagenesis based on the reaction mechanism. Chem Commun 21:877–879Google Scholar
  30. Janes LE, Kazlauskas RJ (1997) Quick E. A fast spectroscopic method to measure the enantioselectivity of hydrolases. J Org Chem 62:4560–4561CrossRefGoogle Scholar
  31. Kan SJ, Lewis RD, Chen K, Arnold FH (2016) Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354(6315):1048–1051CrossRefPubMedPubMedCentralGoogle Scholar
  32. Köninger K, Gomez-Baraibar A, Mügge C, Paul C, Hollmann F, Nowaczyk M, Kourist R (2016) Recombinant cyanobacteria as tools for asymmetric C = C bond reduction fueled by biocatalytic water oxidation. Angew Chem Int Ed 55:5582–5585.  https://doi.org/10.1002/anie.201601200
  33. Koudelakova T, Chaloupkova R, Brezovsky J, Prokop Z, Sebestova E, Hesseler M, Khabiri M, Plevaka M, Kulik D, Kuta Smatanova I (2013) Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. Angew Chem Int Ed 52:1959–1963CrossRefGoogle Scholar
  34. Kourist R, Bartsch S, Bornscheuer UT (2007) Highly enantioselective synthesis of arylaliphatic tertiary alcohols using mutants of an esterase from Bacillus subtilis. Adv Synth Catal 349:1393–1398CrossRefGoogle Scholar
  35. Kourist R, Jochens H, Bartsch S, Kuipers R, Padhi SK, Gall M, Böttcher D, Joosten HJ, Bornscheuer UT (2010) The alpha/beta-hydrolase fold 3DM database (ABHDB) as a tool for protein engineering. ChemBioChem 11:1635–1643.  https://doi.org/10.1002/cbic.201000213
  36. Leroy E, Bensel N, Reymond JL (2003) A low background high-throughput screening (HTS) fluorescence assay for lipases and esterases using acyloxymethylethers of umbelliferone. Bioorg Med Chem Lett 13:2105–2108CrossRefPubMedGoogle Scholar
  37. Leung DW, Chen E, Goeddel DV (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1:11–15Google Scholar
  38. Liebeton K, Zonta A, Schimossek K, Nardini M, Lang D, Dijkstra BW, Reetz MT, Jaeger KE (2000) Directed evolution of an enantioselective lipase. Chem Biol 7:709–718CrossRefPubMedGoogle Scholar
  39. Liu AMF, Somers NA, Kazlauskas RJ, Brush TS, Zocher F, Enzelberger MM, Bornscheuer UT, Horsman GP, Mezzetti A, Schmidt-Dannert C, Schmid RD (2001) Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Phiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron: Asymmetry 12:545–556CrossRefGoogle Scholar
  40. Lutz S, Bornscheuer UT (eds) (2008) Protein engineering handbook. Wiley VCH, WeinheimGoogle Scholar
  41. Lutz S, Ostermeier M, Benkovic SJ (2001) Rapid generation of incremental truncation libraries for protein engineering using alpha phosphorothioate nucleotides. Nucleic Acids Res 29:e16CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33:25–40CrossRefPubMedGoogle Scholar
  43. Mayer KM, Arnold FH (2002) A colorimetric assay to quantify dehydrogenase activity in crude cell lysates. J Biomol Screen 7:135–140CrossRefPubMedGoogle Scholar
  44. Meyer MM, Hochrein L, Arnold FH (2006) Structure-guided SCHEMA recombination of distantly related β-lactamases. Prot Eng Des Sel 19:563–570CrossRefGoogle Scholar
  45. Miyauchi Y, Kourist R, Uemura D, Miyamoto K (2011) Dramatically improved catalytic activity of an artificial (S)-selective arylmalonate decarboxylase by structure-guided directed evolution. Chem Commun 47:7503–7505.  https://doi.org/10.1039/c1cc11953b
  46. Molina-Espeja P, Garcia-Ruiz E, Gonzalez-Perez D, Ullrich R, Hofrichter M, Alcalde M (2014) Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl Environ Microbiol 80(11):3496–3507CrossRefPubMedPubMedCentralGoogle Scholar
  47. Molina Espeja P, Cañellas M, Plou FJ, Hofrichter M, Lucas F, Guallar V, Alcalde M (2016) Synthesis of 1 naphthol by a natural peroxygenase engineered by directed evolution. ChemBioChem 17:341–349CrossRefPubMedGoogle Scholar
  48. Moore JC, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14:458–467CrossRefPubMedGoogle Scholar
  49. Neylon C (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32:1448–1459CrossRefPubMedPubMedCentralGoogle Scholar
  50. Obata R, Nakasako M (2010) Structural basis for inverting the enantioselectivity of arylmalonate decarboxylase revealed by the structural analysis of the Gly74Cys/Cys188Ser mutant in the liganded form. Biochemistry 49:1963–1969.  https://doi.org/10.1021/bi9015605
  51. Ostermeier M, Lutz S (2003) The creation of ITCHY hybrid protein libraries. In: Arnold FH, Georgiou G (eds) Directed evolution library creation: methods and protocols, Methods in molecular biology. Humana Press, Totowa, pp 129–141CrossRefGoogle Scholar
  52. Ostermeier M, Shim JH, Benkovic SJ (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol 17:1205–1209CrossRefPubMedGoogle Scholar
  53. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Gen 16:379–394CrossRefGoogle Scholar
  54. Patel PH, Kawate H, Adman E, Ashbach M, Loeb LA (2001) A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem 276:5044–5051CrossRefPubMedGoogle Scholar
  55. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Biotechnol 2:891–903Google Scholar
  56. Reetz MT, Wilensek S, Zha D, Jaeger KE (2001) Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew Chem Int Ed 40:3589–3591CrossRefGoogle Scholar
  57. Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed 45:7745–7751CrossRefGoogle Scholar
  58. Reetz MT, Soni P, Fernandez L (2009) Knowledge-guided laboratory evolution of protein thermolability. Biotechnol Bioeng 102:1712–1717CrossRefPubMedGoogle Scholar
  59. Reymond JL (ed) (2005) Enzyme assays. Wiley-VCH, WeinheimGoogle Scholar
  60. Sandström AG, Engström K, Jyhlén J, Kasrayan A, Bäckvall J-E (2009) Directed evolution of Candida antarctica lipase A using an episomally replicating yeast plasmid. Protein Eng Des Sel 22(7):413–420CrossRefPubMedGoogle Scholar
  61. Sandström AG, Wikmark Y, Engström K, Nyhlén J, Bäckvall J-e (2012) Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc Natl Acad Sci U S A 109:78–83.  https://doi.org/10.1073/pnas.1111537108 CrossRefPubMedGoogle Scholar
  62. Schmidt M, Hasenpusch D, Kahler M, Kirchner U, Wiggenhorn K, Lange W, Bornscheuer UT (2006) Directed evolution of an esterase from Pseudomonas fluorescens yields a mutant with excellent enantioselectivity and activity for the kinetic resolution of a chiral building block. ChemBioChem 7:805–809CrossRefPubMedGoogle Scholar
  63. Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz HG, Bornscheuer UT (2015) An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew Chem Int Ed 54:2784–2787CrossRefGoogle Scholar
  64. Schrewe M, Ladkau N, Bühler B, Schmid A (2013) Direct terminal alkylamino-functionalization via multistep biocatalysis in one recombinant whole-cell catalyst. Adv Synth Catal 355:1693–1697CrossRefGoogle Scholar
  65. Stemmer WPC (1994) Rapid evolution of a protein by in vitro DNA shuffling. Nat Biotechnol 370:389–391Google Scholar
  66. Tee KL, Wong TS (2013) Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 31:1707–1721CrossRefPubMedGoogle Scholar
  67. Terao Y, Miyamoto K, Ohta H (2006) Improvement of the activity of arylmalonate decarboxylase by random mutagenesis. Appl Microbiol Biotechnol 73:647–653CrossRefPubMedGoogle Scholar
  68. Udit AK, Silberg JJ, Sieber V (2003) Sequence homology-independent protein recombination, SHIPREC. In: Arnold FH, Georgiou G (eds) Directed evolution library creation: methods and protocols, Methods in molecular biology. Humana Press, Totowa, pp 153–164CrossRefGoogle Scholar
  69. Wahler D, Reymond JL (2002) The adrenaline test for enzymes. Angew Chem Int Ed 41:1229–1232CrossRefGoogle Scholar
  70. Wahler D, Boujard O, Lefevre F, Reymond JL (2004) Adrenaline profiling of lipases and esterases with 1,2-diol and carbohydrate acetates. Tetrahedron 60:703–710CrossRefGoogle Scholar
  71. Yang GY, Shamsuddin AM (1996) Gal-GalNAc: a biomarker of colon carcinogenesis. Histol Histopathol 11:801–806PubMedGoogle Scholar
  72. Yoshida S, Enoki J, Kourist R, Miyamoto K (2015) Engineered hydrophobic pocket of (S)-selective arylmalonate decarboxylase variant by simultaneous saturation mutagenesis to improve catalytic performance. Biosci Biotechnol Biochem 79:1965–1971CrossRefPubMedGoogle Scholar
  73. Zhao H (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biotechnology and Enzyme Catalysis, Institute of BiochemistryGreifswald UniversityGreifswaldGermany
  2. 2.Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria

Personalised recommendations