Chemical Production: Biohalogenation

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Natural and synthetic organohalogens are used in a variety of applications, and with an increasing emphasis on sustainable methods of production, enzymes that can form carbon-halogen bonds are an attractive alternative to classical synthetic approaches. Since the discovery of FADH2-dependent halogenases 20 years ago, there has been a dramatic increase in our understanding of biological halogenation reactions, with several distinct classes of halogenating enzymes identified. In this chapter, an overview of the various halogenases is given and examples of how these can be applied to the production of biotechnologically important compounds.

References

  1. Bernhardt P, Okino T, Winter JM, Miyanaga A, Moore BS (2011) A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. J Am Chem Soc 133(12):4268–4270CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL (2006) Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440(7082):368–371CrossRefPubMedGoogle Scholar
  3. Chang ZX, Flatt P, Gerwick WH, Nguyen VA, Willis CL, Sherman DH (2002) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296(1–2):235–247CrossRefPubMedGoogle Scholar
  4. Clark BR, Lacey E, Gill JH, Capon RJ (2007) The effect of halide salts on the production of Gymnoascus reessii polyenylpyrroles. J Nat Prod 70(4):665–667CrossRefPubMedGoogle Scholar
  5. Clark BR, O’Connor S, Fox D, Leroy J, Murphy CD (2011) Production of anticancer polyenes through precursor-directed biosynthesis. Org Biomol Chem 9(18):6306–6311CrossRefPubMedGoogle Scholar
  6. Deb Roy A, Gruschow S, Cairns N, Goss RJM (2010) Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J Am Chem Soc 132(35):12243–12245CrossRefPubMedGoogle Scholar
  7. Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O’Hagan D (2014) Identification of Fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by Genome Mining. Chembiochem 15(3):364–368CrossRefPubMedGoogle Scholar
  8. Diethelm S, Teufel R, Kaysser L, Moore BS (2014) A multitasking vanadium-dependent chloroperoxidase as an inspiration for the chemical synthesis of the merochlorins. Angewandte Chemie-International Edition 53(41):11023–11026CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dong CJ, Flecks S, Unversucht S, Haupt C, van Pee KH, Naismith JH (2005) Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 309(5744):2216–2219CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eustaquio AS, O’Hagan D, Moore BS (2010) Engineering fluorometabolite production: fluorinase expression in Salinispora tropica Yields Fluorosalinosporamide. J Nat Prod 73(3):378–382CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eustaquio AS, Pojer F, Noe JP, Moore BS (2008) Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat Chem Biol 4(1):69–74CrossRefPubMedGoogle Scholar
  12. Fernandez-Fueyo E, van Wingerden M, Renirie R, Wever R, Ni Y, Holtmann D, Hollmann F (2015) Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis. ChemCatChem 7(24):4035–4038CrossRefGoogle Scholar
  13. Frese M, Sewald N (2015) Enzymatic halogenation of tryptophan on a gram scale. Angewandte Chemie-International Edition 54(1):298–301. doi:10.1002/anie.201408561CrossRefPubMedGoogle Scholar
  14. Hammer PE, Hill DS, Lam ST, VanPee KH, Ligon JM (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63(6):2147–2154PubMedPubMedCentralGoogle Scholar
  15. Hillwig ML, Liu X (2014) A new family of iron-dependent halogenases acts on freestanding substrates. Nat Chem Biol 10(11):921–923CrossRefPubMedGoogle Scholar
  16. Hohaus K, Altmann A, Burd W, Fischer I, Hammer PE, Hill DS, Ligon JM, vanPee KH (1997) NADH-dependent halogenases are more likely to be involved in halometabolite biosynthesis than haloperoxidases. Angewandte Chemie-International Edition in English 36(18):2012–2013CrossRefGoogle Scholar
  17. Keller S, Wage T, Hohaus K, Holzer M, Eichhorn E, van Pee KH (2000) Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens. Angewandte Chemie-International Edition 39(13):2300–2302CrossRefPubMedGoogle Scholar
  18. Ma L, Li Y, Meng L, Deng H, Li Y, Zhang Q, Diao A (2016) Biological fluorination from the sea: discovery of a SAM-dependent nucleophilic fluorinating enzyme from the marine-derived bacterium Streptomyces xinghaiensis NRRL B24674. RSC Adv 6(32):27047–27051CrossRefGoogle Scholar
  19. Mahoney KPP, Smith DRM, Bogosyan EJA, Goss RJM (2014) Access to high value natural and unnatural products through hyphenating chemical synthesis and biosynthesis. Synthesis-Stuttgart 46(16):2122–2132CrossRefGoogle Scholar
  20. Murphy CD (2003) New frontiers in biological halogenation. J Appl Microbiol 94(4):539–548CrossRefPubMedGoogle Scholar
  21. O’Hagan D, Schaffrath C, Cobb SL, Hamilton JTG, Murphy CD (2002) Biosynthesis of an organofluorine molecule – a fluorinase enzyme has been discovered that catalyses carbon-fluorine bond formation. Nature 416(6878):279–279CrossRefPubMedGoogle Scholar
  22. Payne JT, Andorfer MC, Lewis JC (2013) Regioselective arene halogenation using the FAD-dependent halogenase RebH. Angewandte Chemie-International Edition 52(20):5271–5274CrossRefPubMedGoogle Scholar
  23. Payne JT, Poor CB, Lewis JC (2015) Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angewandte Chemie-International Edition 54(14):4226–4230CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sergeev ME, Morgia F, Javed MR, Doi M, Keng PY (2013) Polymer-immobilized fluorinase: recyclable catalyst for fluorination reactions. J Mol Catal B Enzym 92:51–56CrossRefGoogle Scholar
  25. Shaw PD, Hager LP (1959) An enzymatic chlorination reaction. J Am Chem Soc 81(4):1011–1012CrossRefGoogle Scholar
  26. Shepherd SA, Menon BRK, Fisk H, Struck AW, Levy C, Leys D, Micklefield J (2016) A structure-guided switch in the regioselectivity of a tryptophan halogenase. Chembiochem 17(9):821–824CrossRefPubMedPubMedCentralGoogle Scholar
  27. Thompson S, Onega M, Ashworth S, Fleming IN, Passchier J, O’Hagan D (2015) A two-step fluorinase enzyme mediated F-18 labelling of an RGD peptide for positron emission tomography. Chem Commun 51(70):13542–13545. doi:10.1039/c5cc05013hCrossRefGoogle Scholar
  28. Vaillancourt FH, Yin J, Walsh CT (2005) SyrB2 in syringomycin E biosynthesis is a nonherne Fe-II alpha-ketoglutarate- and O2-dependent halogenase. Proc Natl Acad Sci U S A 102(29):10111–10116CrossRefPubMedPubMedCentralGoogle Scholar
  29. van Pee KH (2012) Halogenating enzymes for selective halogenation reactions. Curr Org Chem 16(21):2583–2597CrossRefGoogle Scholar
  30. Winn M, Foulkes JM, Perni S, Simmons MJH, Overton TW, Goss RJM (2012) Biofilms and their engineered counterparts: a new generation of immobilised biocatalysts. Cat Sci Technol 2(8):1544–1547CrossRefGoogle Scholar
  31. Yeh E, Blasiak LC, Koglin A, Drennan CL, Walsh CT (2007) Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 46(5):1284–1292CrossRefPubMedGoogle Scholar
  32. Zhu X, Robinson DA, McEwan AR, O’Hagan D, Naismith JH (2007) Mechanism of enzymatic fluorination in streptomyces cattleya. J Am Chem Soc 129(47):14597–14604CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, Urgast DS, Krupp EM, Brewer A, Vanner S, Szawiola A, Yim G, Feldmann J, Bechthold A, Wright GD, Zechel DL (2015) Biosynthesis of the fluorinated natural product nucleocidin in Streptomyces calvus is dependent on the bldA-specified Leu-tRNA(UUA) molecule. Chembiochem 16(17):2498–2506CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.UCD School of Biomolecular and Biomedical ScienceUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations