Advertisement

Chemical Feedstocks and Fine Chemicals from Other Substrates

  • K. Muffler
  • N. Tippkötter
  • R. Ulber
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

It is well known that classical energy sources such as petroleum oil and natural gas make up the fundamental materials, on which all modern industrial chemical parks are based on. According to the finiteness availability of these consuetudinary resources and due to the increasing demand for energy of developing countries and the related rise in prices of oil and natural gas, renewable resources must be considered as valuable alternatives. Discussions about climate changes with regard to alternatives of energy production are very fervid, but alternatives have to be examined from a matter-of-fact-based, economical, and scientific point of view. Within the frame of this contribution, we focus therefore on alternative sources with respect to their potential as future building blocks for chemical synthesis processes.

Keywords

Renewable resources Biorefinery Methanol Methane Lipids Whey Biotransformation 

References

  1. Adam AC, Rubio-Texeira M, Polaina J (2004) Lactose: the milk sugar from a biotechnological perspective. Crit Rev Food Sci Nutr 44(7–8):553–557.PubMedGoogle Scholar
  2. Asinger F (1986) Methanol – Chemie- und Energierohstoff. Springer Verlag, BerlinCrossRefGoogle Scholar
  3. Baumann H, Buhler M, Fochem H, Hirsinger F, Zoebelein H, Falbe J (1988) Natural fats and oils – renewable raw-materials for the chemical-industry. Angew Chem Int Ed Eng 27(1):41–62.CrossRefGoogle Scholar
  4. Biermann U, Friedt W, Lang S, Luhs W, Machmuller G, Metzger JO, Klaas MR, Schafer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Ed Eng 39(13):2206–2224.CrossRefGoogle Scholar
  5. Bury D, Jelen P, Kimura K (1998) Whey protein concentrate as a nutrient supplement for lactic acid bacteria. Int Dairy J 8(2):149–151.CrossRefGoogle Scholar
  6. Busch R, Hirth T, Liese A, Nordhoff S, Puls J, Pulz O, Sell D, Syldatk C, Ulber R (2006) The utilization of renewable resources in German industrial production. Biotechnol J 1:770–776.CrossRefPubMedGoogle Scholar
  7. Campbell CJ (2006) The Rimini Protocol an oil depletion protocol: heading off economic chaos and political conflict during the second half of the age of oil. Energ Policy 34:1319–1325.CrossRefGoogle Scholar
  8. Cheng KK, Zhang JA, Liu DH, Sun Y, Yang MD, JM X (2006) Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett 28(22):1817–1821.CrossRefPubMedGoogle Scholar
  9. Furuto T, Takeguchi M, Okura I (1999) Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J Mol Catal A Chem 144:257–261.CrossRefGoogle Scholar
  10. Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 72(1):96–101.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Guimaraes WV, Dudey GL, Ingram LO (1992) Fermentation of sweet whey by ethanologenic Escherichia coli. Biotechnol Bioeng 40(1):41–45.CrossRefPubMedGoogle Scholar
  12. Hatti-Kaul R, Tornvall U, Gustafsson L, Borjesson P (2007) Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective. Trends Biotechnol 25(3):119–124.CrossRefPubMedGoogle Scholar
  13. Hiller H, Reimert R, Marschner F, Renner HJ, Boll W, Supp E, Brejc M, Liebner W, Schaub G, Hochgesand G, Higman C, Kalteier P, Müller WD, Kriebel M, Schlicht H (2006) Gas production. In: Ullmann’s encyclopedia of industrial chemistry, electronic release. Wiley, WeinheimGoogle Scholar
  14. Jenck JF, Agterberg F, Droescher MJ (2004) Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem 6(11):544–556.CrossRefGoogle Scholar
  15. Kleerebezem R, Macarie H (2003) Treating industrial wastewater: anaerobic digestion comes of age. Chem Eng 110:56–64Google Scholar
  16. Kochloefl K (1997) Steam reforming. In: Ertl G, Knörzinger H, Weitkamp J (eds) Handbook of heterogenous catalysts, vol 4. Wiley, WeinheimGoogle Scholar
  17. Kortekaas S, Vidal G, He YL, Lettinga G, Field JA (1998) Anaerobic-aerobic treatment of toxic pulping black liquor with upfront effluent recirculation. J Ferment Bioeng 86:97–110.CrossRefGoogle Scholar
  18. Kricheldorf HR (2001) Syntheses and application of polylactides. Chemosphere 43(1):49–54.CrossRefPubMedGoogle Scholar
  19. Lewgndowska M, Kujawski W (2007) Ethanol production from lactose in a fermentation/pervaporation system. J Food Eng 79(2):430–437.CrossRefGoogle Scholar
  20. Manera AP, Ores JD, Ribeiro VA, Andre C, Burkert V, Kalil SJ (2008) Optimization of the culture medium for the production of beta-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technol Biotechnol 46(1):66–72Google Scholar
  21. Mehta PK, Mishra S, Ghose TK (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium– batch and continuous studies. Biotechnol Bioeng 37:551–556.CrossRefPubMedGoogle Scholar
  22. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459.CrossRefPubMedGoogle Scholar
  23. Nyns EJ (2000) Methane. In: Ullmann’s encyclopedia of industrial chemistry, electronic release. Wiley, WeinheimGoogle Scholar
  24. Obert R, Dave BC (1999) Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices. J Am Chem Soc 121:12192–12193.CrossRefGoogle Scholar
  25. Papanikolaou S, Fakas S, Fick M, Cheualot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32(1):60–71.CrossRefGoogle Scholar
  26. Pavone A (2003) Mega methanol plants, report No. 43D, process economics program, SRI Consulting, Menlo Park, CaliforniaGoogle Scholar
  27. Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7(6):1904–1911.CrossRefPubMedGoogle Scholar
  28. Rech R, Ayub MAZ (2007) Simplified feeding strategies for fed-batch cultivation of Kluyveromyces marxianus in cheese whey. Process Biochem 42(5):873–877CrossRefGoogle Scholar
  29. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci U S A 105:10654–10658.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108.CrossRefPubMedGoogle Scholar
  31. Seghezzo L, Cuevas CM, Trupiano AP, Guerra RG, Gonzalez SM, Zeeman G, Lettinga G (2006) Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions. Water Sci Technol 54:223–229.CrossRefPubMedGoogle Scholar
  32. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzym Microb Technol 39(3):352–361.CrossRefGoogle Scholar
  33. Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55(1):10–18.CrossRefPubMedGoogle Scholar
  34. Taguchi S, Nakamura H, Kichise T, Tsuge T, Yamato I, Doi Y (2003) Production of polyhydroxyalkanoate (PHA) from renewable carbon sources in recombinant Ralstonia eutropha using mutants of original PHA synthase. Biochem Eng J 16(2):107–113.CrossRefGoogle Scholar
  35. Torkay BA (2000) Biomass chemicals. In: Ullmann’s encyclopedia of industrial chemistry, electronic release. Wiley, WeinheimGoogle Scholar
  36. Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94(6):579–584.CrossRefPubMedGoogle Scholar
  37. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56(3–4):289–295.CrossRefPubMedGoogle Scholar
  38. Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66(2):131–142.CrossRefPubMedGoogle Scholar
  39. Xin JY, Cui JR, XX H, Li SB, Xia CG, Zhu LM, Wang YQ (2002) Particulate methane monooxygenase from Methylosinus trichosporium is a copper-containing enzyme. Biochem Biophys Res Commun 295:182–186.CrossRefPubMedGoogle Scholar
  40. Xin JY, Cui JR, Niu JZ, Hua SF, Xia CG, Li SB, Zhu LM (2004) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransform 22:225–229.CrossRefGoogle Scholar
  41. Xin JY, Zhang YX, Zhang S, Xia CG, Li SB (2007) Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011. J Basic Microbiol 47:426–435.CrossRefPubMedGoogle Scholar
  42. Zafar S, Owais M (2006) Ethanol production from crude whey by Kluyveromyces marxianus. Biochem Eng J 27(3):295–298.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Bioprocess EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations