Biodiesel from Microalgae

  • M. S. Nicolò
  • S. P. P. Guglielmino
  • V. Solinas
  • A. Salis
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The development of industrial processes for large-scale production of biofuels , in particular biodiesel , is one of the most pursued purposes of research teams, companies, and governments all in the world, as consequence of a necessary reduction of CO2 emissions and the need of renewable and affordable energy sources.

However, several constraints strongly limit biodiesel production, and its use, basically, is as additive blended with petrodiesel.

Microalgae are photosynthetic microorganisms which can convert CO2 into triacylglycerols, and then, since decades, they have been considered as a potential innovative feedstock for biodiesel production, able to successfully replace oil crops.

Despite the considerable research and funding efforts, up to now biodiesel from microalgae is still an expensive process, because no significant reduction in cost of the downstream processing of biomass (biomass separation and drying and oil extraction) has been achieved.

Therefore, biodiesel production may be considered as part of a hypothetical process which produces several high-value added microalgae-based products, as pharmaceuticals or nutraceuticals.

However, research and capital investments in biodiesel production from microalgae show a positive trend up to date.


  1. Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein–protein interactions. PLoS ONE 7:e42949CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  3. Cesarini S, Pastor FIJ, Nielsen PM, Diaz P (2015) Moving towards a competitive fully enzymatic biodiesel process. Sustainability 7:7884–7903CrossRefGoogle Scholar
  4. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  5. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520CrossRefGoogle Scholar
  6. de Jaeger L, Verbeek R, Draaisma R, Martens D, Springer J, Eggink G et al (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fan JL, Andre C, CC X (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991CrossRefPubMedGoogle Scholar
  8. Fork DC, Murata N, Sato N (1979) Effect of growth temperature on the lipid and fatty acid composition, and the dependence on temperature of light-induced redox reactions of cytochrome f and of light energy redistribution in the thermophilic Blue-Green Alga Synechococcus lividus. Plant Physiol 63:524–530CrossRefPubMedPubMedCentralGoogle Scholar
  9. Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B (2016) Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol J 14:1649–1660CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energ Rev 41:1447–1464CrossRefGoogle Scholar
  11. Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology – from genetics to synthetic biology. Biotechnol Adv 33:1194–1203CrossRefPubMedGoogle Scholar
  12. Hobden R (2014) Commercializing enzymatic biodiesel production. Int News Fats Oils Relat Mater 25:143–144Google Scholar
  13. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169CrossRefGoogle Scholar
  14. Holton RW, Blecker HH, Stevens TS (1968) Fatty acids in blue-green algae: possible relation to phylogenetic position. Science 160:545–547CrossRefPubMedGoogle Scholar
  15. Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS Press, ChampaignCrossRefGoogle Scholar
  16. La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20CrossRefPubMedGoogle Scholar
  17. Lee AK, Lewis DM, Ashman PJ (2014) Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels. J Appl Phycol 27:1881–1889CrossRefGoogle Scholar
  18. Lu J, Sheahanb C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466CrossRefGoogle Scholar
  19. Ma YH, Wang X, Niu YF, Yang ZK, Zhang MH, Wang ZM, Yang WD, Liu JS, Li HY (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Factories 13:1–9CrossRefGoogle Scholar
  20. Maeda Y, TateishiT NY, Muto M, Yoshino T, Kisailus D, Tanaka T (2016) Peptide-mediated microalgae harvesting method for efficient biofuel production. Biotechnol Biofuels 9:10CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mallick N, Mandal S, Singh AK, Bishai M, Dash A (2012) Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J Chem Technol Biotechnol 87:137–145CrossRefGoogle Scholar
  22. Mata TN, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  23. Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178CrossRefGoogle Scholar
  24. Mittelbach M, Remschmidt C (2005) Biodiesel – the comprehensive handbook. Martin Mittelbach Publisher, GrazGoogle Scholar
  25. Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700CrossRefGoogle Scholar
  26. Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB et al (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569CrossRefPubMedPubMedCentralGoogle Scholar
  27. Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142CrossRefGoogle Scholar
  28. Poppe JK, Fernandez-Lafuente R, Rodrigues RC, Ayub MA (2015) Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnol Adv 33:511–525CrossRefPubMedGoogle Scholar
  29. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259CrossRefGoogle Scholar
  31. Robles-Heredia JC, Sacramento-Rivero JC, Canedo-LópezY R-MA, Vilchiz-Bravo LE (2015) A multistage gradual nitrogen reduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Braz J Chem Eng 32:335–345CrossRefGoogle Scholar
  32. Salis A, Monduzzi M, Solinas V (2007) Use of lipases for the production of Biodiesel. In: Polaina J, MacCabe AP (eds) Industrial Enzymes. Springer, Dordrecht, pp 317–339CrossRefGoogle Scholar
  33. Salis A, Nicolò M, Guglielmino S, Solinas V (2010a) Biodiesel from microalgae. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1st edn. Springer, Berlin/Heidelberg, pp 2827–2839CrossRefGoogle Scholar
  34. Salis A, Casula MF, Bhattacharyya MS, Pinna MM, Solinas V, Monduzzi M (2010b) Physical and chemical lipase adsorption on sba-15: effect of different interactions on enzyme loading and catalytic performance. ChemCatChem 2:322–329CrossRefGoogle Scholar
  35. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190, National Renewable Energy Laboratory, USA.Google Scholar
  36. Show KY, Lee DJ, Tay JH, Lee TM, Chang JS (2015) Microalgal drying and cell disruption – recent advances. Bioresour Technol 184:258–266CrossRefPubMedGoogle Scholar
  37. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefPubMedGoogle Scholar
  38. U.S. Energy Information Administration (EIA) (2016) Monthly Energy Review, July 2016.
  39. United Nations Environment Project (2009) Towards sustainable production and use of resources: assessing biofuels.
  40. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ et al (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261CrossRefPubMedPubMedCentralGoogle Scholar
  41. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9CrossRefPubMedGoogle Scholar
  42. Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, Xu L, GGuo X, Fan C, Chen Y, Ruan J, Hao S, Li Y, Wang RRC, Hu Z (2014) Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol Biofuels 7:128PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • M. S. Nicolò
    • 1
  • S. P. P. Guglielmino
    • 1
  • V. Solinas
    • 2
  • A. Salis
    • 2
  1. 1.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità di MessinaMessinaItaly
  2. 2.Dipartimento di Scienze Chimiche e GeologicheUniversità di Cagliari – CSGI Cittadella Universitaria MonserratoCagliariItaly

Personalised recommendations