Hydrocarbons are detected in species of all algal phyla, but their contents are generally below 2% of algal dry weight skewed toward odd-carbon number, typically at C15, C17, or C21. Botryococcus braunii, a green colonial species (300–500 μm), contains exceptionally high hydrocarbons. Among the three races of B. braunii, race A contains C25–C31 n-alkadienes/trienes up to 61% dry weight and race B contains C31–C37 botryococcenes (triterpenes) up to 86% of dry weight. Race L contains lycopadienes (tetraterpene) C40H78 up to 8% dry weight. Cultures with 0.3% CO2-enriched air could shorten mass doubling time by 3.6 times. Nitrogen deficiency favors lipid accumulation, but nitrogen required for growth should be above 0.2 mg L−1. The optimal temperature for B. braunii is 20–25 °C with a light intensity of 60–100 Wm−2. Slow growth is the major hurdle retarding the production of hydrocarbon at a large scale. The combined approach of molecular biology, genetic engineering and ecology is recommended to escalate the algal growth and hydrocarbon production to yield a commercially competitive alternative for renewable biofuels from algae.


  1. Antia NJ, Lee RF, Nevenzel JC, Cheng JY (1974) Wax ester production by the marine cryptomonad Chroomonas salina grown photoheterotrophically on glycerol. J Protozool 21:768–771CrossRefPubMedGoogle Scholar
  2. Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279CrossRefPubMedGoogle Scholar
  3. Ben-Amotz A, Torbene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–78CrossRefGoogle Scholar
  4. Blumer M, Mullin MM, Guillard RRL (1970) A polyunsaturated hydrocarbon (3, 6, 9, 12, 15, 18-heneicosahexaene) in the marine food web. Mar Biol 6:226–235CrossRefGoogle Scholar
  5. Blumer M, Guillard RRL, Chase T (1971) Hydrocarbons of marine phytoplankton. Mar Biol 8:183–189CrossRefGoogle Scholar
  6. Brown AC, Knights BA (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543–547CrossRefGoogle Scholar
  7. Cane RF (1969) Coorongite and the genesis of oil shale. Geochim Cosmochim Acta 33:569–577CrossRefGoogle Scholar
  8. Casadevall E, Largeau C, Metzger P, Chirac C, Berkaloff C, Coute A (1983) Hydrocarbon production by unicellular microalga Botryococcus braunii. Biosciences 2:129–138Google Scholar
  9. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  10. Cox RE, Burlingame AI, Wilson DM, Eglinton GJ (1973) Botryococcene- a tetramethylated acyclic triterpenoid of algal origin. Chem CommunGoogle Scholar
  11. Douglas AG, Eglinton G, Maxwell JR (1969) The hydrocarbons of coorongite. Geochim Cosmochim Acta 33:569–577CrossRefGoogle Scholar
  12. Drew KM, Ross R (1964) Some generic names in Bangiophycidae. Taxon 14:93–98CrossRefGoogle Scholar
  13. Fehler SWG, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorportion of [methyl- 14C]- and [methyl- 2H 3]-methionine. Biochemistry 9:418–428CrossRefPubMedGoogle Scholar
  14. Gelpi E, Schneider H, Mann J, Oro J (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9:603–608CrossRefGoogle Scholar
  15. Gschwend PM, Macfarlane JK, Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227:1033–1035CrossRefPubMedGoogle Scholar
  16. Huang Z, Poulter CD (1989) Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochemistry 28:1467–1470CrossRefGoogle Scholar
  17. Komárek J, Marvan P (1992) Morphological differences in natural populations of the genus Botryococcus (Chlorophyceae). Arch Protistenkd 141:65–100CrossRefGoogle Scholar
  18. Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014CrossRefGoogle Scholar
  19. Largeau C, Casadevall E, Berkaloff C, Dhamliencourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1048CrossRefGoogle Scholar
  20. Lee RF, Loeblich AR (1971) Distribution of 21: 6 hydrocarbon and its relationship to 22: 6 fatty acid in algae. Phytochemistry 10:593–598CrossRefGoogle Scholar
  21. Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Physiol 17:551–556Google Scholar
  22. Lupi FM, Fernandes HML, Tomme MM, Sa Correia I, Novais JM (1994) Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii. Enzym Microb Technol 6:546–558CrossRefGoogle Scholar
  23. Maxwell JR, Douglas AG, Eglinton G, McCormick A (1968) The Botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii, Kützing. Phytochemistry 7:2157–2171CrossRefGoogle Scholar
  24. McKirdy DM, Cox RE, Volkman JK, Howell VJ (1986) Botryococcane in a new class of Australian non-marine crude oils. Nature 320:57–59CrossRefGoogle Scholar
  25. McMurry J (2000) Organic chemistry. Brooks/Cole, Pacific GroveGoogle Scholar
  26. Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green-alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934CrossRefGoogle Scholar
  27. Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 205–260Google Scholar
  28. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRefPubMedGoogle Scholar
  29. Metzger P, Berkaloff C, Couté A, Casadevall E (1985) Alkadieneand botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312CrossRefGoogle Scholar
  30. Metzger P, Casadevall E, Coute A (1988) Botryococcene distribution in strains of green alga Botryococcus braunii. Phytochemistry 27:1383–1988CrossRefGoogle Scholar
  31. Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266CrossRefGoogle Scholar
  32. Metzger P, Villarrealrosales E, Casadevall E (1991) Methyl-branched fatty aldehydes and fatty-acids in Botryococcus braunii. Phytochemistry 30:185–191CrossRefGoogle Scholar
  33. Nevenzel JC (1989) Biogenic hydrocarbons of marine organisms. In: Ackman RG (ed) Marine biogenic lipids, fats, and oils. CRC Press, Boca Baton, pp 3–71Google Scholar
  34. Nishimoto S (1974) Chemotaxonomic study of n-alkanes in aquatic plants. J Sci Hiroshima Univ Ser A Phys Chem 38:159–168Google Scholar
  35. Okada S, Devarenne TP, Chappell J (2000) Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 373:307–317CrossRefPubMedGoogle Scholar
  36. Patterson GW (1967) The effect of culture conditions on the hydrocarbon content of Chlorella vulgaris. J Phycol 3:22–28CrossRefPubMedGoogle Scholar
  37. Perry GJ, Gillan FT, Johns RB (1978) Lipid composition of a prochlorophyte. J Phycol 14:369–371CrossRefGoogle Scholar
  38. Qin JG (2005) Bio-hydrocarbons from algae: impacts of temperature, light and salinity on algae growth. Rural Industries Research and Development CorporationGoogle Scholar
  39. Qin JG, Li Y (2006) Optimization of the growth environment of Botryococcus braunii strain CHN 357. J Freshw Ecol 21:169–176CrossRefGoogle Scholar
  40. Rezanka T, Zahradnik J, Podojil M (1977) Hydrocarbons in green and blue-green algae. Folia Microbiol (Prague) 27:450–454CrossRefGoogle Scholar
  41. Senousy HH, Beakes GW, Hack E (2004) Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40:412–423CrossRefGoogle Scholar
  42. Smith GM (1950) The fresh-water algae of the United States. McGraw-Hill, New YorkGoogle Scholar
  43. Wake LV, Hillen LW (1981) Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes. Aust J Mar Freshwat Res 32:353–367CrossRefGoogle Scholar
  44. Wolf FR, Nanomura AM, Bassham JA (1985) Growth and branched hydrocarbon production in a strain of Botryococcus braunii. J Phycol 21:388–398CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations