Advertisement

Biomethane as an Energy Source

  • J. Robson
  • A. Alessi
  • C. Bochiwal
  • C. O’Malley
  • J. P. J. Chong
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Microbe-mediated anaerobic digestion (AD) occurs in a wide range of natural and man-made habitats and results in the production of biogas . In order to use biogas as a transport fuel, it must undergo a costly conversion to biomethane (>95% methane). Biomethane can replace natural gas as a clean fuel in vehicles as it produces fewer harmful emissions than petrol, diesel, or LPG in spite of the considerable improvements made to these fuels in recent years. In addition to producing fewer emissions, biomethane poses fewer environmental hazards than other fuels. In the event of an accident, biomethane dissipates into the atmosphere rather than spilling onto the ground – a major benefit for waterways and wildlife. The main barrier for the use of biomethane as a transport fuel is the requirement for additional infrastructure such as refueling stations. This restriction does not apply to the use of biogas or biomethane for static energy generation such as electricity and heat production. Currently, biomethane from large AD plants can be injected directly into natural gas distribution networks. While AD has been extensively utilized in wastewater treatment , industrial-scale application of this technology to solid organic wastes has only recently begun to be adopted, probably due to a number of not fully defined and poorly understood parameters that influence the efficiency and robustness of microbes in this process.

References

  1. Awobusuyi DT (2016) Concentration of ammonium from dilute aqueous solutions using commercially available reverse osmosis membranes, University of OttawaGoogle Scholar
  2. Bo-Feng C, Jian-Guo L, Qing-Xian G, Xiao-Qin N, Dong C, Lan-Cui L, Ying Z, Zhan-Sheng Z (2014) Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv Clim Chang Res 5:81–91CrossRefGoogle Scholar
  3. Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:1–17CrossRefGoogle Scholar
  4. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438CrossRefPubMedGoogle Scholar
  5. Gerardi MH (2003) The Microbiology of Anaerobic Digesters. J Wiley & Sons, Inc. ISBN: 9780471206934Google Scholar
  6. He S, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, Tremblay J, del Rio TG, Waldrop MP, Windham-Myers L, and Tringe SG (2015) Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio, 6: e00066-15Google Scholar
  7. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484CrossRefPubMedGoogle Scholar
  8. Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. In: Urban development series; knowledge papers no. 15, Pub. The World Bank, Washinton, DC. USA.Google Scholar
  9. Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A, Harada H (2008) Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58:294–301CrossRefPubMedGoogle Scholar
  10. Jones WJ, Whitman WB, Fields RD, Wolfe RS (1983) Growth and plating efficiency of methanococci on agar media. Appl Environ Microbiol 46:220–226PubMedPubMedCentralGoogle Scholar
  11. Körner I, Braukmeier J, Herrenklage J, Leikam K, Ritzkowski M, Schlegelmilch M, Stegmann R (2003) Investigation and optimization of composting processes – test systems and practical examples. Waste Manag 23:17–26CrossRefPubMedGoogle Scholar
  12. Krich K, Augenstein D, Batmale JP, Beneman J, Rutledge B, Salour D (2005) Biomethane from dairy waste, a sourcebook for the production and use of renewable natural gas. Pub. California Institute for Energy and EnvironmentGoogle Scholar
  13. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28CrossRefPubMedGoogle Scholar
  14. Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRefGoogle Scholar
  15. Montalbo-Lomboy M, Khanal SK, van Leeuwen J, Raj Raman D, Dunn L Jr, Grewell D (2010) Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous systems. Ultrason Sonochem 17:939–946CrossRefPubMedGoogle Scholar
  16. Montgomery LFR, Bochmann G (2014) Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy: 1–20Google Scholar
  17. Mor S, Ravindra K, De Visscher A, Dahiya RP, Chandra A (2006) Municipal solid waste characterization and its assessment for potential methane generation: a case study. Sci Total Environ 371:1–10CrossRefPubMedGoogle Scholar
  18. Mori K, Yamamoto H, Kamagata Y, Hatsu M, Takamizawa K (2000) Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50:1723–1729CrossRefPubMedGoogle Scholar
  19. Pimentel M, Gunsalus RP,Rao SSC, Zhang H (2012) Methanogens in human health and disease. AJG Supplements 1:28–33Google Scholar
  20. Powell JT, Townsend TG, Zimmerman JB (2016) Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nature Climate Change 6:162–165.Google Scholar
  21. Puyuelo B, Ponsá S, Gea T, Sánchez A (2011) Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 85:653–659CrossRefPubMedGoogle Scholar
  22. Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641CrossRefPubMedGoogle Scholar
  23. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380CrossRefGoogle Scholar
  24. Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087PubMedGoogle Scholar
  25. Scheehle (2006) Anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. National Service Center for Environmental Publications, Pub. US Environmental Protection AgencyGoogle Scholar
  26. Schink B (2008) Energetic aspects of methanogenic feeding webs. Bioenergy (Wall, J. el al., eds, ASM Press, Washington DC, USA), pp. 171–178.Google Scholar
  27. Show K-Y, Wang Y, Foong S-F, Tay J-H (2004) Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res 38:2293–2304CrossRefGoogle Scholar
  28. Singh S, Kumar S, Jain MC, Kumar D (2001) Increased biogas production using microbial stimulants. Bioresour Technol 78:313–316CrossRefPubMedGoogle Scholar
  29. Stams AJM, Elferink O, Stefanie JWH (1997) Understanding and advancing wastewater treatment. Curr Opin Biotechnol 8:328–334CrossRefPubMedGoogle Scholar
  30. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:1–18CrossRefGoogle Scholar
  31. Thanh PM, Ketheesan B, Yan Z, Stuckey D (2016) Trace metal speciation and bioavailability in anaerobic digestion: a review. Biotechnol Adv 34:122–136CrossRefPubMedGoogle Scholar
  32. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. 6:579–591Google Scholar
  33. The European Biogas Report. (2015) Pub. The European Biogas AssociationGoogle Scholar
  34. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940CrossRefPubMedGoogle Scholar
  35. Weimer PJ (1998) Manipulating ruminal fermentation: a microbial ecological perspective. J Anim Sci 76:3114–3122CrossRefPubMedGoogle Scholar
  36. Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • J. Robson
    • 1
  • A. Alessi
    • 1
  • C. Bochiwal
    • 1
  • C. O’Malley
    • 1
  • J. P. J. Chong
    • 1
  1. 1.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations