Skip to main content

Utility of Industrial Experimental Sites for Developing Analytical, Monitoring, and Remediation Technologies

  • Reference work entry
  • First Online:
Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 501 Accesses

Abstract

The use of industrial sites for developing analytical, monitoring, and bioremediation technologies has been central to advances in the cleanup of hazardous waste sites. While that may seem obvious, since so many contaminated sites are industrial, site owners are sometimes reluctant to allow the results of experimental work on their property to reach publication, out of concern that it might reveal unfavorable information. Those barriers have gradually come down to the benefit of the entire bioremediation field and site owners. Increasingly, results are being reported based on research and fieldwork on industrial sites, often without revealing the identity of the site or the site owners. An overview of critical advances in bioremediation by major category of contaminants shows that, while laboratory studies regularly provide insight and theoretical background, in situ applications at contaminated industrial sites have driven the pattern of development of bioremediation technology. Examples are offered for developments in remediation of chlorinated ethenes, chlorinated ethanes, halogenated methanes, and chlorinated aromatics. These reinforce the importance of promoting application of laboratory and field studies at industrial sites. Industrial sites are likely to play a major role in advancing remediation of emerging contaminants such as 1,4-dioxane and perfluoroalkyl compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson DT, Mahendra S, Walker KL, Rauch SR, Sengupta S, Newell CJ (2014) A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites. Environ Sci Technol Lett 1(5):254–258

    Article  CAS  Google Scholar 

  • Adamson DT, Anderson RH, Mahendra S, Newell CJ (2015) Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. Environ Sci Technol 49(11):6510–6518

    Article  CAS  Google Scholar 

  • Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34(9):1794–1805

    Article  CAS  Google Scholar 

  • Bedard DL (2008) A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyl-from sediment to defined medium. Annu Rev Microbiol 62(1):253–270

    Article  CAS  Google Scholar 

  • Bedard DL, Ritalahti KM, Loffler FE (2007) The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 73(8):2513–2521

    Article  CAS  Google Scholar 

  • Blessing M, Schmidt TC, Dinkel R, Haderlein SB (2009) Delineation of multiple chlorinated ethene sources in an industrialized area – a forensic field study using compound-specific isotope analysis. Environ Sci Technol Lett 43(8):2701–2707

    Article  CAS  Google Scholar 

  • Bosma TNP, van Aalst MA, Rijnaarts HHM (1997) Intrinsic dechlorination of 1,2-dichloroethane at an industrial site. In: Alleman BC, Leeson A (eds) In Situ and On-Site Bioremediation: volume 3. Battelle Press, Columbus, pp 155–159

    Google Scholar 

  • Butler EC, Hayes KF (2001) Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environ Sci Technol 35(19):3884–3891

    Article  CAS  Google Scholar 

  • Chan CCH, Mundle SOC, Eckert T, Liang X, Tang S, Lacrampe-Couloume G, Edwards EA, Sherwood Lollar B (2012) Large carbon isotope fractionation during biodegradation of chloroform by Dehalobacter cultures. Environ Sci Technol 46(18):10154–10160

    CAS  PubMed  Google Scholar 

  • Cherry JA, Parker BL, Keller C (2007) A new depth-discrete multilevel monitoring approach for fractured rock. Ground Water Monit R 27(2):57–70

    Article  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68(12):6162–6171

    Article  CAS  Google Scholar 

  • Cox E, Edwards E, Lehmicke L, Major D (1995) Intrinsic biodegradation of trichloroethene and trichloroethane in a sequential anaerobic-aerobic aquifer. In: Hinchee RE, Wilson JT, Downey DC (eds) Intrinsic Bioremediation. Battelle Press, Columbus, pp 223–232

    Google Scholar 

  • Cox EE, McMaster M, Major DW, Lehmicke L, Neville S (1998) Natural attenuation of 1,2-dichloroethane and chloroform in groundwater at a Superfund site. Proceedings of the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH

    Google Scholar 

  • Danko AS, Luo M, Bagwell CE, Brigmon RL, Freedman DL (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl Environ Microbiol 70(10):6092–6097

    Article  CAS  Google Scholar 

  • Darlington R, Lehmicke L, Andrachek RG, Freedman DL (2008) Biotic and abiotic anaerobic transformations of trichloroethene and cis-1,2-dichloroethene in fractured sandstone. Environ Sci Technol 42(12):4323–4330

    Article  CAS  Google Scholar 

  • De Wildeman S, Diekert G, Van Langenhove H, Verstraete W (2003) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl Environ Microbiol 69(9):5643–5647

    Article  Google Scholar 

  • Dinglasan-Panlilio MJ, Dworatzek S, Mabury S, Edwards EA (2006) Microbial oxidation of 1,2-dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures. FEMS Microbiol Ecol 56:355–364

    Article  CAS  Google Scholar 

  • Duhamel M, Wehra SD, Yua L, Rizvia H, Seepersada D, Dworatzeka S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36(17):4193–4202

    Article  CAS  Google Scholar 

  • Edwards EA, Cox EE (1997) Field and laboratory studies of sequential anaerobic-aerobic chlorinated solvent biodegradation. In: Alleman BC, Leeson A (eds) In Situ and On-Site Bioremediation. Battelle Press, New Orleans, pp 261–265

    Google Scholar 

  • Elango V, Cashwell JM, Bellotti MJ, Marotte R, Freedman DL (2010) Bioremediation of hexachlorocyclohexane isomers, chlorinated benzenes, and chlorinated ethenes in soil and fractured dolomite. Bioremediation J 14(1):10–27

    Article  CAS  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Haggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38(7):2075–2081

    Article  CAS  Google Scholar 

  • Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fung JM, Weisenstein BP, Mack EE, Vidumsky JE, Ei TA, Zinder SH (2009) Reductive dehalogenation of dichlorobenzenes and monochlorobenzene to benzene in microcosms. Environ Sci Technol 43(7):2302–2307

    Article  CAS  Google Scholar 

  • Grostern A, Edwards EA (2006) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849–7856

    Article  CAS  Google Scholar 

  • Grostern A, Edwards EA (2009) Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75(9):2684–2693

    Article  CAS  Google Scholar 

  • Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Yang K-L, Koeningsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  CAS  Google Scholar 

  • Heidrich S, Weiß H, Kaschl A (2004) Attenuation reactions in a multiple contaminated aquifer in Bitterfeld (Germany). Environ Pollut 129(2):277–288

    Article  CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68(2):485–495

    Article  CAS  Google Scholar 

  • Hirschorn SK, Dinglasan MJ, Elsner M, Mancini SA, Lacrampe-Couloume G, Edwards EA, Sherwood Lollar B (2004) Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environ Sci Technol 38(18):4775–4781

    Article  CAS  Google Scholar 

  • Hunkeler D, Meckenstock RU, Sherwood Lollar B, Schmidt TC, Wilson JT (2008) A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA). EPA 600/R-08/148. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=202171

    Google Scholar 

  • Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78(4):1288–1291

    Article  CAS  Google Scholar 

  • Justicia-Leon SD, Higgins S, Mack EE, Griffiths DR, Tang S, Edwards EA, Löffler FE (2014) Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms. Environ Sci Technol 48:1851–1858

    Article  CAS  Google Scholar 

  • Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SCB, Novak PJ (2012) Natural niche for organohalide-respiring chloroflexi. Appl Environ Microbiol 78(2):393–401

    Article  CAS  Google Scholar 

  • Lee W, Batchelor B (2002a) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36(23):5147–5154

    Article  CAS  Google Scholar 

  • Lee W, Batchelor B (2002b) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust. Environ Sci Technol 36(24):5348–5354

    Article  CAS  Google Scholar 

  • Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14(4):883–894

    Article  CAS  Google Scholar 

  • Leisinger T, Bader R, Hermann R, Schmid-Appert M, Vuilleumier S (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5:237–284

    Article  CAS  Google Scholar 

  • Li M, Fiorenza S, Chatham JR, Mahendra S, Alvarez PJJ (2010) 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples. Water Res 44(9):2894–2900

    Article  CAS  Google Scholar 

  • Liang X, Devine CE, Nelson J, Sherwood Lollar B, Zinder S, Edwards EA (2013) Anaerobic conversion of chlorobenzene and benzene to CH4 and CO2 in bioaugmented microcosms. Environ Sci Technol 47(5):2378–2385

    Article  CAS  Google Scholar 

  • Liang X, Molenda O, Tang S, Edwards EA (2015) Identity and substrate specificity of reductive dehalogenases expressed in Dehalococcoides-containing enrichment cultures maintained on different chlorinated ethenes. Appl Environ Microbiol 81(14):4626–4633

    Article  CAS  Google Scholar 

  • Liou JSC, Szostek B, DeRito CM, Madsen EL (2010) Investigating the biodegradability of perfluorooctanoic acid. Chemosphere 80(2):176–183

    Article  CAS  Google Scholar 

  • Lippincott D, Streger SH, Schaefer CE, Hinkle J, Stormo J, Steffan RJ (2015) Bioaugmentation and propane biosparging for in situ biodegradation of 1,4-dioxane. Groundw Monit Remediat 35(2):81–92

    Article  CAS  Google Scholar 

  • Maes A, VanRaemdonck H, Smith K, Ossieur W, Lebbe L, Verstraete W (2006) Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater. Environ Sci Technol 40(17):5544–5552

    Article  CAS  Google Scholar 

  • Mägli A, Messmer M, Leisinger T (1998) Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum. Appl Environ Microbiol 64(2):646–650

    PubMed  PubMed Central  Google Scholar 

  • Major DW, Hodgins EW, Butler BJ (1991) Field and laboratory evidence of in situ biotransformation of tetrachloroethene to ethene and ethane at a chemical transfer facility in North Toronto. In Hinchee RE, Olfenbuttel RF (ed), On-Site Bioreclamation. Butterworth-Heinemann, Stoneham, MA 147–171

    Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36(23):5106–5116

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Chien Y-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(June 6):1568–1571

    Article  Google Scholar 

  • Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70(8):4880–4888

    Article  Google Scholar 

  • Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH (2011) A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environ Sci Technol 45(16):6806–6813

    Article  CAS  Google Scholar 

  • Parsons F, Wood PR, DeMarco J (1984) Transformations of tetrachloroethene and trichloroethene in microcosms and groundwater. J Am Water Works Assoc 76(2):56–59

    Article  CAS  Google Scholar 

  • Passeport E, Landis R, Lacrampe-Couloume G, Lutz EJ, Mack EE, West K, Morgan S, Sherwood Lollar B (2016) Sediment monitored natural recovery evidenced by compound specific isotope analysis and high-resolution pore water sampling. Environ Sci Technol 50(22):12197–12204

    Article  CAS  Google Scholar 

  • Sales CM, Mahendra S, Grostern A, Parales RE, Goodwin LA, Woyke T, Nolan M, Lapidus A, Chertkov O, Ovchinnikova G, Sczyrba A, Alvarez-Cohen L (2011) Genome sequence of the 1,4-dioxane-degrading Pseudonocardia dioxanivorans strain CB1190. J Bacteriol 193(17):4549–4550

    Article  CAS  Google Scholar 

  • Shan H, Kurtz HD Jr, Freedman DL (2010) Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes. Water Res 44(5):1317–1328

    Article  CAS  Google Scholar 

  • Shan H, Wang H, Yu R, Jacob P, Freedman D (2014) Biodegradation of high concentrations of halomethanes by a fermentative enrichment culture. AMB Express 4(1):48

    Article  Google Scholar 

  • Stromeyer SA, Winkelbauer W, Kohler H, Cook AM, Leisinger T (1991) Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2:129–137

    Article  CAS  Google Scholar 

  • Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117

    Article  CAS  Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ Sci Technol 21(8):722–736

    Article  CAS  Google Scholar 

  • Wehr S (2001) Characterization of Anaerobic Dechlorinating Enrichment Cultures Maintained on Different Chlorinated Ethenes. Master’s of Applied Science, University of Toronto, National Library of Canada. http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/MQ58751.pdf  

    Google Scholar 

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49(1):242–243

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Freedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freedman, D.L., Yu, R. (2019). Utility of Industrial Experimental Sites for Developing Analytical, Monitoring, and Remediation Technologies. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50433-9_17

Download citation

Publish with us

Policies and ethics