Skip to main content

Membrane Lipid Degradation and Lipid Cycles in Microbes

  • Reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Abstract

All living cells are delimited from the exterior world by a membrane, and membrane-forming lipids are the structural determinants for membrane assembly and maintenance. Although biosynthesis of membrane-forming lipids is well understood in many organisms, turnover, degradation, and remodeling of these lipids are less studied. An initial degradation of glycerol-containing membrane lipids may occur by (phospho)lipases or transferases which remove distinct groups from the membrane lipid converting it into a lysolipid or diacylglycerol. These degradation intermediates can either be totally degraded into low-molecular-weight metabolites or missing groups can be reintroduced onto the intermediates to convert them into fully functional membrane lipids again, thereby completing a lipid cycle. Classic examples in Escherichia coli are the lyso-phosphatidylethanolamine cycle, the diacylglycerol cycle, or cycles involving the isoprenoid undecaprenol. It is evident that many more lipid cycles exist in other proteobacteria and in gram-positive bacteria and that these cycles play major roles in decorating biomolecules located outside the cytoplasmic compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt W, Groenewold MK, Hebecker S, Dickschat JS, Moser J (2013) Identification and characterization of a periplasmic aminoacyl-phosphatidylglycerol hydrolase responsible for Pseudomonas aeruginosa lipid homeostasis. J Biol Chem 288:24717–24730

    Article  CAS  Google Scholar 

  • Beld J, Finzel K, Burkart MD (2014) Versatility of acyl-acyl carrier protein synthetases. Chem Biol 21:1293–1299

    Article  CAS  Google Scholar 

  • Bohin JP (2000) Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186:11–19

    Article  CAS  Google Scholar 

  • Bontemps-Gallo S, Lacroix JM (2015) New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. Environ Microbiol Rep 7:690–697

    Article  CAS  Google Scholar 

  • Bontemps-Gallo S, Cogez V, Robbe-Masselot C, Quintard K, Dondeyne J, Madec E, Lacroix JM (2013) Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the phosphoethanolamine transferase is encoded by opgE. Biomed Res Int 2013:371429. http://www.hindawi.com/journals/bmri/2013/371429/

    Article  Google Scholar 

  • Carini P, Van Mooy BA, Thrash JC, White A, Zhao Y, Campbell CO, Fredricks HF, Giovannoni SJ (2015) SAR11 lipid renovation in response to phosphate starvation. Proc Natl Acad Sci USA 112:7767–7772

    Article  CAS  Google Scholar 

  • Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella typhimurium outer membrane. Proc Natl Acad Sci USA 111:1963–1968

    Article  CAS  Google Scholar 

  • Dalebroux ZD, Edrozo MB, Pfuetzner RA, Ressl S, Kulasekara BR, Blanc MP, Miller SI (2015) Delivery of cardiolipins to the Salmonella outer membrane is necessary for survival within host tissues and virulence. Cell Host Microbe 17:441–451

    Article  CAS  Google Scholar 

  • van der Es D, Hohendorf WFJ, Overkleeft HS, van der Marel GA, JDC C (2017) Teichoic acids: synthesis and applications. Chem Soc Rev 46:1464–1482. https://doi.org/10.1039/c6cs00270f

    Article  CAS  PubMed  Google Scholar 

  • Flores-Díaz M, Monturiol-Gross L, Naylor C, Alape-Girón A, Flieger A (2016) Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol Mol Biol Rev 80:597–628

    Article  Google Scholar 

  • Geiger O, Röhrs V, Weissenmayer B, Finan TM, Thomas-Oates JE (1999) The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 32:63–73

    Article  CAS  Google Scholar 

  • Geiger O, Sohlenkamp C, López-Lara IM (2018) Formation of Bacterial Glycerol-Based Membrane Lipids: Pathways, Enzymes, and Reactions. In: Geiger O (ed) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham

    Google Scholar 

  • van Golde LMG, Schulman H, Kennedy EP (1973) Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli. Proc Natl Acad Sci USA 70:1368–1372

    Article  Google Scholar 

  • Gupta SD, Dowhan W, Wu HC (1991) Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli. J Biol Chem 266:9983–9986

    CAS  PubMed  Google Scholar 

  • Harvat EM, Zhang YM, Tran CV, Zhang Z, Frank MW, Rock RO, Saier MH Jr (2005) Lysophospholipid flipping across the Escherichia coli inner membrane catalyzed by a transporter (LplT) belonging to the major facilitator superfamily. J Biol Chem 280:12028–12034

    Article  CAS  Google Scholar 

  • Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS (2016) The power of asymmetry: architecture and assembly of the Gram-negative outer membrane lipid bilayer. Annu Rev Microbiol 70:255–278

    Article  CAS  Google Scholar 

  • Hsu L, Jackowski S, Rock CO (1989) Uptake and acylation of 2-acyl-lysophospholipids by Escherichia coli. J Bacteriol 171:1203–1205

    Article  CAS  Google Scholar 

  • Jerga A, Lu YJ, Schujman GE, de Mendoza D, Rock CO (2007) Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. J Biol Chem 282:21738–21745

    Article  CAS  Google Scholar 

  • Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: Lol is not the end. Phil Trans R Soc B 370:20150030

    Article  Google Scholar 

  • Lands WE (1958) Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883–888

    CAS  PubMed  Google Scholar 

  • Lin Y, Bogdanov M, Tong S, Guan Z, Zheng L (2016) Substrate selectivity of lysophospholipid transporter LplT involved in membrane phospholipid remodeling in Escherichia coli. J Biol Chem 291:2136–2149

    Article  CAS  Google Scholar 

  • López-Lara IM, Geiger O (2016) Bacterial lipid diversity. Biochim Biophys Acta. https://doi.org/10.1016/j.bbalip.2016.10.007

    Article  Google Scholar 

  • López-Lara IM, Gao JL, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O (2005) Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Mol Plant-Microbe Interact 18:973–982

    Article  Google Scholar 

  • Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touze T (2014) Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb Drug Resist 20:199–214

    Article  CAS  Google Scholar 

  • Meyer BH, Albers SJ (2013) Hot and sweet: protein glycosylation in Crenarchaeota. Biochem Soc Trans 41:384–392

    Article  CAS  Google Scholar 

  • Mileykovskaya E, Ryan AC, Mo X, Lin CC, Khalaf KI, Dowhan W, Garrett TA (2009) Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem 284:2990–3000

    Article  CAS  Google Scholar 

  • Miller KJ, Gore RS, Benesi AJ (1988) Phosphoglycerol substituents present on the cyclic β-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol 170:4569–4575

    Article  CAS  Google Scholar 

  • Nelson DL, Cox MM (2017) Lehninger – principles of biochemistry, 7th edn. WH Freeman and Company, New York

    Google Scholar 

  • Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  Google Scholar 

  • Pailler J, Aucher W, Oires M, Buddelmeijer N (2012) Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase(Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J Bacteriol 194:2142–2151

    Article  CAS  Google Scholar 

  • Pech-Canul A, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, López-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304

    Article  CAS  Google Scholar 

  • Percy MG, Gründling A (2014) Lipoteichoic acid synthesis and function in Gram-positive bacteria. Annu Rev Microbiol 68:81–100

    Article  CAS  Google Scholar 

  • Qiu Y, Hassaninasab A, Han GS, Carman GM (2016) Phosphorylation of Dgk1 diacyglycerol kinase by casein kinase II regulates phosphatidic acid production in Saccharomyces cerevisiae. J Biol Chem 291:26455–26467

    Article  CAS  Google Scholar 

  • Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  Google Scholar 

  • Renne MF, Bao X, de Smet CH, de Kroon AIPM (2015) Lipid acyl chain remodeling in yeast. Lipid Insights 8(S1):33–40

    PubMed  Google Scholar 

  • Reynolds CM, Kalb SR, Cotter RJ, Raetz CRH (2005) A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca++ hypersensitivity of an eptB deletion mutant. J Biol Chem 280:21202–21211

    Article  CAS  Google Scholar 

  • Rock CO (2008) Fatty acids and phospholipids metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 59–96

    Chapter  Google Scholar 

  • Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116:215–225

    Article  CAS  Google Scholar 

  • Sahonero-Canavesi DX, Sohlenkamp C, Sandoval-Calderón M, Lamsa A, Pogliano K, López-Lara IM, Geiger O (2015) Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ Microbiol 17:3391–3406

    Article  CAS  Google Scholar 

  • Sahonero-Canavesi DX, Zavaleta-Pator M, Martínez-Aguilar L, López-Lara IM, Geiger O (2016) Defining substrate specificities for lipase and phospholipase candidates. J Vis Exp 117:e54613. https://doi.org/10.3791/54613

    Article  CAS  Google Scholar 

  • Sebastián M, Smith AF, González JM, Fredricks HF, Van Mooy B, Koblížek M, Brandsma J, Koster G, Mestre M, Mostajir B, Pitta P, Postle AD, Sánchez P, Gasol JM, Scanlan DJ, Chen Y (2016) Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J 10:968–978

    Article  Google Scholar 

  • Shindou H, Shimizu T (2009) Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem 284:1–5

    Article  CAS  Google Scholar 

  • Slavetinsky C, Kuhn S, Peschel A (2016) Bacterial aminoacyl phospholipids – biosynthesis and role in basic cellular processes and pathogenicity. Biochim Biophys Acta. https://doi.org/10.1016/j.bbalip.2016.11.013

    Article  CAS  Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    Article  CAS  Google Scholar 

  • Sutterlin HA, Shi H, May KL, Miguel A, Khare S, Huang KC, Silhavy TJ (2016) Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc Natl Acad Sci USA 113:E1565–E1574

    Article  CAS  Google Scholar 

  • Touze T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS (2008) Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67:264–277

    Article  CAS  Google Scholar 

  • Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink HP, Martínez-Romero E, Werner D (2003) Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol Plant-Microbe Interact 16:159–168

    Article  CAS  Google Scholar 

  • Wang P, Ingram-Smith C, Hadley JA, Miller KJ (1999) Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic β-glucan biosynthesis. J Bacteriol 181:4576–4583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissborn AC, Rumley MK, Kennedy EP (1991) Biosynthesis of membrane-derived oligosaccharides. Membrane-bound glucosyltransferase system from Escherichia coli requires polyprenyl phosphate. J Biol Chem 266:8062–8067

    CAS  PubMed  Google Scholar 

  • Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107:302–307

    Article  CAS  Google Scholar 

  • Zhang XS, Cheng HP (2006) Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Appl Environ Microbiol 72:2738–2748

    Article  CAS  Google Scholar 

  • Zhang YM, Rock CO (2016) Fatty acid and phospholipid biosynthesis in prokaryotes. In: Ridgway N, McLeod R (eds) Biochemistry of lipids, lipoproteins and membranes, 6th edn. Elsevier BV, Amsterdam, pp 73–112

    Chapter  Google Scholar 

Download references

Acknowledgement

Research in our lab was supported by grants from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178359 and 253549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia) and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN202616, IN203612). We thank Lourdes Martínez-Aguilar for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Geiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sahonero-Canavesi, D.X., López-Lara, I.M., Geiger, O. (2019). Membrane Lipid Degradation and Lipid Cycles in Microbes. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_38

Download citation

Publish with us

Policies and ethics