Computational Modeling and the Design of Perovskite Solar Cells

Living reference work entry


Materials modeling of solar cell absorbers has been developing rapidly in the last few decades, thanks to the capability of density functional theory to calculate total energies and electronic structures and the development of computational algorithms to determine optical properties, band offsets, and defects in semiconductors. We give a brief introduction to the materials systems and the computation of key parameters for photovoltaic application such as the bandgap, effective mass, and optical absorption. Then we take perovskite solar cells as an example, to show how one can understand and engineer real materials through high-throughput first-principles calculations. This is followed by a short perspective.


  1. Adamo C, Barone V (1999) Toward reliable density functional methods without Adjustable parameters: The PBE0 model. J Chem Phys 110:6158ADSCrossRefGoogle Scholar
  2. Adhyaksa GWP, Brittman S, Āboliņš H, Lof A, Li X, Keelor JD, Luo Y, Duevski T, Heeren RMA, Ellis SR, Fenning DP, Garnett EC (2018) Understanding detrimental and beneficial grain boundary effects in halide perovskites. Adv Mater 30:1804792CrossRefGoogle Scholar
  3. Baikie T, Fang YN, Kadro JM, Schreyer M, Wei FX, Mhaisalkar SG, Graetzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3 NH3) PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628CrossRefGoogle Scholar
  4. Balachandran PV, Emery AA, Gubernatis JE, Lookman T, Wolverton C, Zunger A (2018) Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys Rev Mater 2:043802CrossRefGoogle Scholar
  5. Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515ADSCrossRefGoogle Scholar
  6. Bartel CJ, Sutton C, Goldsmith BR, Ouyang RH, Musgrave CB, Ghiringhelli LM, Scheffler M (2019) New tolerance factor to predict the stability of perovskite oxides and halides. Science Advance 5:eaav0693, arXiv:1801.07700ADSCrossRefGoogle Scholar
  7. Bhushan M, Catalano A (1981) Polycrystalline Zn3P2 schottky barrier solar cells. Appl Phys Lett 38:39ADSCrossRefGoogle Scholar
  8. Bi Y, Yuan Y, Exstrom CL, Darveau SA, Huang J (2011) Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application. Nano Lett 11:4953ADSCrossRefGoogle Scholar
  9. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316ADSCrossRefGoogle Scholar
  10. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559:547ADSCrossRefGoogle Scholar
  11. Carreras A, Togo A, Tanaka I (2017) DynaPhoPy: A code for extracting phonon quasiparticles from molecular dynamics simulations. Comput Phys Commun 221:221ADSCrossRefGoogle Scholar
  12. Chen SY, Gong XG, Walsh A, Wei SH (2009) Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights. Appl Phys Lett 94:041903ADSCrossRefGoogle Scholar
  13. Chen S, Walsh A, Gong XG, Wei SH (2013) Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater 25:1522CrossRefGoogle Scholar
  14. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347:967ADSCrossRefGoogle Scholar
  15. Du MH (2014) Efficient carrier transport in halide perovskites: Theoretical perspectives. J Mater Chem A 2:9091CrossRefGoogle Scholar
  16. Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D (2014) Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nat Commun 5:3461ADSCrossRefGoogle Scholar
  17. Fagen EA (1979) Optical properties of Zn3P2. J Appl Phys 50:6505ADSCrossRefGoogle Scholar
  18. Frost KB, Brivio F, Hendon C, Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584ADSCrossRefGoogle Scholar
  19. Ghiringhelli LM, Carbogno C, Levchenko S, Mohamed F, Huhs G, Lüders M, Oliveira M, Scheffler M (2017) Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats. npj Comput Mater 3:46ADSCrossRefGoogle Scholar
  20. Giannozzi P, De Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. Phys Rev B 43:7231ADSCrossRefGoogle Scholar
  21. Gonze X, Lee C (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355ADSCrossRefGoogle Scholar
  22. Hall RB, Birkmire RW, Phillips JE, Meakin JD (1981) Thin-film polycrystalline Cu2S/Cd1−xZnx S solar cells of 10% efficiency. Appl Phys Lett 38:925ADSCrossRefGoogle Scholar
  23. Hu J, Zhang Y, Law M, Wu R (2012) Increasing the band gap of iron pyrite by alloying with oxygen. J Am Chem Soc 134:13216CrossRefGoogle Scholar
  24. Huo Z, Wei S-H, Yin W-J (2018) High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics. J Phys D Appl Phys 51:474003CrossRefGoogle Scholar
  25. Inorganic Crystal Structure Database (ICSD). Accessed in January 2019
  26. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G et al (2013) Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater 1:011002ADSCrossRefGoogle Scholar
  27. Jung HS, Park NG (2015) Perovskite solar cells: from materials to devices. Small 11:10CrossRefGoogle Scholar
  28. Kawamura Y, Mashiyama H, Hasebe K (2002) Structural study on cubic-tetragonal transition of CH3NH3PbI3. J Phys Soc Jpn 71:1694ADSCrossRefGoogle Scholar
  29. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  30. Kim J, Lee S-H, Lee JH, Hong K-H (2014) The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett 5:1312CrossRefGoogle Scholar
  31. Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput Mater 1:15010ADSCrossRefGoogle Scholar
  32. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050CrossRefGoogle Scholar
  33. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643ADSCrossRefGoogle Scholar
  34. Li Z, Yin W-J (2018) Recent progress in Pb-free stable inorganic double halide perovskites. J Semicond 39:071003CrossRefGoogle Scholar
  35. Li Z, Xu Q, Sun Q, Hou Z, Yin W-J (2019) Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning. Adv Funct Mater 29:1807280CrossRefGoogle Scholar
  36. Madelung O (2004) Semiconductors: data handbook. Springer, Berlin/Heidelberg. ISBN 978-3-642-62332-5CrossRefGoogle Scholar
  37. McGaughey A, Larkin JM (2014) Predicting phonon properties from equilibrium molecular dynamics simulations. Ann Rev Heat Transf 17:49CrossRefGoogle Scholar
  38. Park JS, Kim S, Xie Z, Walsh A (2018) Point defect engineering in thin-film solar cells. Nat Rev Mater 3:194ADSCrossRefGoogle Scholar
  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865ADSCrossRefGoogle Scholar
  40. Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C, Gross N, Milleville C, Xu X, Watson DF, Weinstein B, Sun Y-Y, Zhang S, Zeng H (2016a) Chalcogenide perovskites-an emerging class of ionic semiconductors. Nano Energy 22:129CrossRefGoogle Scholar
  41. Perera S, Hui H, Zhao C (2016b) Chalcogenide perovskites-an emerging class of ionic semiconductors. Nano Energy 22:129CrossRefGoogle Scholar
  42. Pilania G, Balachandran P, Kim C, Lookman T (2016) Finding new perovskite halides via machine learning. Front Mater 3:19Google Scholar
  43. Polizzotti A, Repins IL, Noufi R, Wei SH, Mitzi DB (2013) The state and future prospects of kesterite photovoltaics. Energy Environ Sci 6:3171CrossRefGoogle Scholar
  44. Samuel A (1959) Some studies in machine learning using the game of checkers. II—Recent progress. IBM J Res Dev 3:210CrossRefGoogle Scholar
  45. Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques M (2017) Predicting the thermodynamic stability of solids combining density functional theory and machine learning. Chem Mater 29:5090CrossRefGoogle Scholar
  46. Singh T, Singh J, Miyasaka T (2016) Role of metal oxide electron-transport layer modification on the stability of high performing perovskite solar cells. ChemSusChem 9:2559CrossRefGoogle Scholar
  47. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019CrossRefGoogle Scholar
  48. Sun T, Zhang D-B, Wentzcovitch RM (2014) Dynamic stabilization of cubic perovskite at high temperatures and pressures from Ab initio molecular dynamics. Phys Rev B 89:094109ADSCrossRefGoogle Scholar
  49. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scripta Mater 108:1CrossRefGoogle Scholar
  50. Walsh A, Chen S, Wei S-H, Gong X-G (2012) Kesterite thin-film solar cells: Advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater 2:400CrossRefGoogle Scholar
  51. Walsh A, Scanlon DO, Chen S, Gong X-G, Wei S-H (2015) Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew Chem Int Ed 54:1791CrossRefGoogle Scholar
  52. Wang LW (2012) High Chalcocite: A Solid-liquid hybrid phase. Phys Rev Lett 108:085703Google Scholar
  53. Wang J, Chen H, Wei S-H, Yin W-J (2019) Materials design of solar cell absorbers beyond perovskites and conventional semiconductors via combining tetrahedral and octahedral coordination. Adv Mater 31:1806593CrossRefGoogle Scholar
  54. Xiao Z, Meng W, Wang J, Mitzi DB, Yan Y (2017) Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. 4:206Google Scholar
  55. Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120:145301ADSCrossRefGoogle Scholar
  56. Xu Q, Li Z, Yin W-J (2018) Rationalizing perovskite data for machine learning and materials design. J Phys Chem Lett 9:6948CrossRefGoogle Scholar
  57. Yin W-J, Yan Y (2013) The electronic properties of point defects in earth-abundant photovoltaic material Zn3P2: A hybrid functional method study. J Appl Phys 113:013708ADSCrossRefGoogle Scholar
  58. Yin W-J, Wu Y, Noufi R, Al-Jassim M, Yan Y (2013) Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2. Appl Phys Lett 102:193905ADSCrossRefGoogle Scholar
  59. Yin W-J, Shi TT, Yan YF (2014a) Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater 26:4653CrossRefGoogle Scholar
  60. Yin W-J, Shi TT, Yan YF (2014b) Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett 104:063903ADSCrossRefGoogle Scholar
  61. Yin W-J, Wu Y, Wei S-H, Noufi R, Al-Jassim M, Yan Y (2014c) Engineering grain boundaries in Cu2ZnSnSe4 for better cell performance: A first-principle study. Adv Energy Mater 4:1300712CrossRefGoogle Scholar
  62. Yin W-J, Yang J-H, Kang J, Yan Y, Wei S-H (2015) Halide perovskite materials for solar cells: A theoretical review. J Mater Chem A 3:8926CrossRefGoogle Scholar
  63. Yu L, Zunger A (2012) Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys Rev Lett 108:068701ADSCrossRefGoogle Scholar
  64. Zhang SB, Wei SH, Zunger A, Katayama-Yoshida H (1998) Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B 57:9642ADSCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.School of Energy and Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhouChina
  2. 2.Key Laboratory for Computational Physical Science (Ministry of Education)Fudan UniversityShanghaiChina

Section editors and affiliations

  • Cai-Zhuang Wang
    • 1
  • Christopher Wolverton
    • 2
  1. 1.Ames Laboratory and Department of PhysicsIowa State UniversityAmesUSA
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations