Abstract
Primary radiation damage, resulting from the direct ballistic collisions of energetic particles with matter, is the starting point for all of radiation damage. It has traditionally been simulated using binary collision approximations (BCA) Monte Carlo (MC) method in bulk or layered materials, which has served the community well until now. The introduction of nanosized features into materials, whether as 0D dispersoids to pin grain boundaries, 1D dispersoids for removal of helium and sinking defects, or other nanosized features, introduces major errors into conventional bulk/multilayer BCA-MC simulations. This is due to an inability to simulate the exchange of ions at internal/external phase boundaries and the creation of struck atoms with ranges larger than or comparable to the smallest microstructural feature. We first review the fundamentals of BCA-MC simulations with continuous electronic slowing down for energetic ions, followed by identifying where the traditional approaches fail, and ending with a new full-3D simulation capability to correctly model such features. Such simulations drive the planning and interpretation of radiation exposure campaigns, ion implantation, ion modifications, and even the basic definition of radiation damage. A comparison to more accurate but computationally more expensive, molecular dynamics (MD) simulations of radiation damage will be discussed.
This is a preview of subscription content, access via your institution.




















References
Agostinelli S, Allison J, Amako K et al (2003) GEANT4 – a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8
Baldwin MJ, Doerner RP (2010) Formation of helium induced nanostructure “fuzz” on various tungsten grades. J Nucl Mater 404:165–173. https://doi.org/10.1016/j.jnucmat.2010.06.034
Bayn I, Chen EH, Trusheim ME et al (2015) Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks. Nano Lett 15:1751–1758. https://doi.org/10.1021/nl504441m
Behar M, Fichtner PF, Olivieri CA et al (1985) Range profiles of implanted Bi and Au in amorphous silicon. Nucl Instrum Methods Phys Res B 6:453–458. https://doi.org/10.1016/0168-583X(85)90002-3
Bielajew AF (2001) Fundamentals of the Monte Carlo method for neutral and charged particle transport. The University of Michigan
Biersack JP, Haggmark LG (1980) A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl Inst Methods 174:257–269. https://doi.org/10.1016/0029-554X(80)90440-1
Borschel C, Ronning C (2011) Ion beam irradiation of nanostructures – a 3D Monte Carlo simulation code. Nucl Instrum Methods Phys Res B 269:2133–2138. https://doi.org/10.1016/j.nimb.2011.07.004
Borschel C, Spindler S, Lerose D et al (2011) Permanent bending and alignment of ZnO nanowires. Nanotechnology 22:185307. https://doi.org/10.1088/0957-4484/22/18/185307
Briesmeister JF (1986) MCNP – a general Monte Carlo code for neutron and photon transport. Los Alamos National Laboratory, Los Alamos
Chen Y, Huang S, Ji X et al (2018) Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 12(3):2569–2579. https://doi.org/10.1021/acsnano.7b08418
Crocombette JP (2005) Cascade Modeling. In: Yip S. (eds) Handbook of Materials Modeling. Springer, Dordrecht https://doi.org/10.1007/978-1-4020-3286-8_49
Djurabekova F, Nordlund K (2018) Molecular dynamics simulations of non-equilibrium systems. In: Andreoni W, Yip S. (eds) Handbook of materials modeling. Springer, Cham https://doi.org/10.1007/978-3-319-50257-1_119-1
Eckstein W (1991) Computer simulation of ion-solid interactions. Springer, Berlin/Heidelberg
Economou NP, Notte JA, Thompson WB (2012) The history and development of the helium ion microscope. Scanning 34:83–89. https://doi.org/10.1002/sca.20239
Friedland E, Kalbitzer S, Hayes M et al (1998) Range parameters of gold and lead in carbon and carbon in gold at reduced energies of 10-3 < ∈ < 1. Nucl Instrum Methods Phys Res B 136–138:147–152. https://doi.org/10.1016/S0168-583X(97)00833-1
Gaston D, Newman C, Hansen G, Lebrun-Grandié D (2009) MOOSE: A parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239:1768–1778. https://doi.org/10.1016/j.nucengdes.2009.05.021
Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79:1309–1331. https://doi.org/10.1002/nme.2579
Gilmer G, Yip S (2005) Basic Monte Carlo models: equilibrium and kinetics. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 613–628
Gómez-Navarro C, de Pablo PJ, Gómez-Herrero J et al (2005) Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat Mater 4:534–539. https://doi.org/10.1038/nmat1414
Grande PL, Fichtner PFP, Behar M, Zawislak FC (1988) Range profiles of medium and heavy ions implanted into SiO2. Nucl Inst Methods Phys Res B 35:17–20. https://doi.org/10.1016/0168-583X(88)90093-6
Hoffmann S, Bauer J, Ronning C et al (2009) Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett 9:1341–1344. https://doi.org/10.1021/nl802977m
Hoilijoki S, Holmström E, Nordlund K (2011) Enhancement of irradiation-induced defect production in Si nanowires. J Appl Phys 110:43540. https://doi.org/10.1063/1.3627234
Holland-Moritz H, Scheeler S, Stanglmair C et al (2015) Enhanced sputter yields of ion irradiated Au nano particles: energy and size dependence. Nanotechnology 26:325301. https://doi.org/10.1088/0957-4484/26/32/325301
Hu A, Hassanein A (2012) How surface roughness affects the angular dependence of the sputtering yield. Nucl Instrum Methods Phys Res B 281:15–20. https://doi.org/10.1016/j.nimb.2012.03.026
Jin K, Zhang Y, Zhu Z et al (2014) Electronic stopping powers for heavy ions in SiC and SiO2. J Appl Phys 115:044903. https://doi.org/10.1063/1.4861642
Jin M, Cao P, Yip S, Short MP (2018) Radiation damage reduction by grain-boundary biased defect migration in nanocrystalline Cu. Acta Mater 155:410–417. https://doi.org/10.1016/j.actamat.2018.05.071
Kenmotsu T, Yamamura Y, Muramoto T, Hirotani N (2005) Simulation studies on sputtering in rough surface. Nucl Instrum Methods Phys Res B 228:369–372. https://doi.org/10.1016/j.nimb.2004.10.072
Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:71301. https://doi.org/10.1063/1.3318261
Krasheninnikov AV, Banhart F, Li JX et al (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B Condens Matter Mater Phys 72:125428. https://doi.org/10.1103/PhysRevB.72.125428
LANL (2018) A general Monte Carlo N-Particle (MCNP) transport code. https://laws.lanl.gov/vhosts/mcnp.lanl.gov/index.shtml. Accessed 11 Oct 2018
Li J (2005) Basic molecular dynamics. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 565–588
Li HM, Ding ZJ (2006) Monte Carlo simulation of secondary electron and backscattered electron images in scanning electron microscopy for specimen with complex geometric structure. Scanning 27:254–267. https://doi.org/10.1002/sca.4950270506
Li YG, Mao SF, Li HM, et al (2008) Monte Carlo simulation study of scanning electron microscopy images of rough surfaces. J Appl Phys 104:064901. https://doi.org/10.1063/1.2977745
Li YG, Yang Y, Short MP et al (2015) IM3D: a parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry. Sci Rep 5:1–13. https://doi.org/10.1038/srep18130
Li Y, Yang Y, Short MP et al (2017) Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials. Nucl Fusion 57:16038. https://doi.org/10.1088/1741-4326/57/1/016038
Liontas R, Gu XW, Fu E et al (2014) Effects of helium implantation on the tensile properties and microstructure of Ni73P27 metallic glass nanostructures. Nano Lett 14:5176–5183. https://doi.org/10.1021/nl502074d
Maletinsky P, Hong S, Grinolds MS et al (2012) A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat Nanotechnol 7:320–324. https://doi.org/10.1038/nnano.2012.50
MIT (2011) OpenMC: theory and methodology. https://openmc.readthedocs.io/en/stable/methods/index.html. Accessed 11 Oct 2018
Möller W (2014) TRI3DYN – collisional computer simulation of the dynamic evolution of 3-dimensional nanostructures under ion irradiation. Nucl Instrum Methods Phys Res B 322:23–33. https://doi.org/10.1016/j.nimb.2013.12.027
Möller W, Eckstein W (1984) Tridyn – a TRIM simulation code including dynamic composition changes. Nucl Inst Methods Phys Res B 2:814–818. https://doi.org/10.1016/0168-583X(84)90321-5
Nordlund K, Björkas C, Ahlgren T et al (2014) Multiscale modelling of plasma-wall interactions in fusion reactor conditions. J Phys D Appl Phys 47:224018. https://doi.org/10.1088/0022-3727/47/22/224018
Nordlund K, Zinkle SJ, Sand AE et al (2018) Improving atomic displacement and replacement calculations with physically realistic damage models. Nat Commun 9:1084. https://doi.org/10.1038/s41467-018-03415-5
Nordlund K, Short MP (2018) Modelling of radiation damage in materials: best practices and future directions. In: Andreoni W, Yip S (eds) Handbook of materials modeling. Volume 2 Applications: Current and Emerging Materials. Springer
Odette GR, Wirth BD (2005) Radiation effects in fission and fusion reactors. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 999–1037
Pekin TC, Allen FI, Minor AM (2016) Evaluation of neon focused ion beam milling for TEM sample preparation. J Microsc 264:59–63. https://doi.org/10.1111/jmi.12416
Pezzagna S, Wildanger D, Mazarov P et al (2010) Nanoscale engineering and optical addressing of single spins in diamond. Small 6:2117–2121. https://doi.org/10.1002/smll.201000902
Pezzagna S, Rogalla D, Becker HW et al (2011) Creation of colour centres in diamond by collimated ion-implantation through nano-channels in mica. Phys Status Solidi A 208:2017–2022. https://doi.org/10.1002/pssa.201100455
Romano PK, Forget B (2013) The OpenMC monte carlo particle transport code. Annals of Nuclear Energy. 51:274–81
Rutherford AM, Duffy DM (2007) The effect of electron-ion interactions on radiation damage simulations. J Phys Condens Matter 19:496201. https://doi.org/10.1088/0953-8984/19/49/496201
Ruzic DN (1990) The effects of surface roughness characterized by fractal geometry on sputtering. Nucl Inst Methods Phys Res B 47:118–125. https://doi.org/10.1016/0168-583X(90)90019-Q
Sand AE (2018) Incorporating electronic effects in molecular dynamics simulations of neutron and ion-induced collision cascades. In: Andreoni W., Yip S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_135-1
Scarabelli D, Trusheim M, Gaathon O et al (2016) Nanoscale engineering of closely-spaced electronic spins in diamond. Nano Lett 16:4982–4990. https://doi.org/10.1021/acs.nanolett.6b01692
Schiettekatte F (2008) Fast Monte Carlo for ion beam analysis simulations. Nucl Instrum Methods Phys Res B 266:1880–1885. https://doi.org/10.1016/j.nimb.2007.11.075
Schiettekatte F (2009) Monte Carlo simulation of ion beam analysis spectra using Corteo. https://www.lps.umontreal.ca/~schiette/index.php?n=Recherche.Corteo
Schiettekatte F, Chicoine M (2016) Spectrum simulation of rough and nanostructured targets from their 2D and 3D image by Monte Carlo methods. Nucl Instrum Methods Phys Res B 371:106–110. https://doi.org/10.1016/j.nimb.2015.09.089
Schwen D (2018) MyTRIM. https://github.com/idaholab/mytrim. Accessed 11 Oct 2018
Schwen D, Huang M, Bellon P, Averback RS (2009) Molecular dynamics simulation of intragranular Xe bubble re-solution in UO2. J Nucl Mater 392:35–39. https://doi.org/10.1016/j.jnucmat.2009.03.037
Shinada T, Okamoto S, Kobayashi T, Ohdomari I (2005) Enhancing semiconductor device performance using ordered dopant arrays. Nature 437:1128–1131. https://doi.org/10.1038/nature04086
Short MP, Gaston DR, Jin M et al (2015) Modeling injected interstitial effects on void swelling in self-ion irradiation experiments. J Nucl Mater 471:200–207. https://doi.org/10.1016/j.jnucmat.2015.10.002
Stoller RE, Toloczko MB, Was GS et al (2013) On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res B 310:75–80. https://doi.org/10.1016/j.nimb.2013.05.008
Sun L, Lan C, Zhao S et al (2012) Self-irradiation of thin SiC nanowires with low-energy ions: a molecular dynamics study. J Phys D Appl Phys 45:135403. https://doi.org/10.1088/0022-3727/45/13/135403
Tan S, Livengood R, Hack P et al (2011) Nanomachining with a focused neon beam: a preliminary investigation for semiconductor circuit editing and failure analysis. J Vac Sci Technol B 29:06F604. https://doi.org/10.1116/1.3660797
Toyli DM, Weis CD, Fuchs GD et al (2010) Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett 10:3168–3172. https://doi.org/10.1021/nl102066q
Wang W, Roth J, Lindig S, Wu CH (2001) Blister formation of tungsten due to ion bombardment. J Nucl Mater 299:124–131. https://doi.org/10.1016/S0022-3115(01)00679-1
Watt F, Breese MBH, Bettiol AA, van Kan JA (2007) Proton beam writing. Mater Today 10:20–29
Woo CH (2005) Modeling irradiation damage accumulation in crystals. In: Yip S (ed) Handbook of Materials Modeling. Springer, Dordrecht, pp 959–986
Xu D, Wirth BD, Li M, Kirk MA (2012) Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals. Acta Mater 60:4286–4302. https://doi.org/10.1016/j.actamat.2012.03.055
Yang Y, Li YG, Short MP et al (2018a) Nano-beam and nano-target effects in ion radiation. Nanoscale 10(4):1598–1606. https://doi.org/10.1039/C7NR08116B
Yang Y, Short MP, Li J (2018b) Monte Carlo simulation of PKA distribution along nanowires under ion radiation. Nucl Eng Des 340:300–307. https://doi.org/10.1016/j.nucengdes.2018.09.001. Accessed 11 Oct 2018
Yao Y, van Mourik MW, Santhana Raman P, van Kan JA (2013) Improved beam spot measurements in the 2nd generation proton beam writing system. Nucl Instrum Methods Phys Res B 306:265–270. https://doi.org/10.1016/j.nimb.2012.10.033
Yip S (2014) Nuclear radiation interactions. World Scientific Publishing, Singapore
Yuan B, Yu PC, Tang SM (1993) A database method for binary atomic scattering angle calculation. Nucl Instrum Methods Phys Res B 83:413–418. https://doi.org/10.1016/0168-583X(93)95864-2
Zhang Y, Bae IT, Sun K et al (2009) Damage profile and ion distribution of slow heavy ions in compounds. J Appl Phys 105:104901. https://doi.org/10.1063/1.3118582
Zhang Y, Ishimaru M, Jagielski J et al (2010) Damage and microstructure evolution in GaN under Au ion irradiation. J Phys D Appl Phys 43:85303. https://doi.org/10.1088/0022-3727/43/8/085303
Zhang P, Wang HY, Li YG et al (2012) Monte Carlo simulation of secondary electron images for real sample structures in scanning electron microscopy. Scanning 34:145–150. https://doi.org/10.1002/sca.20288
Zhao S, Kang W, Xue J et al (2015) Comparison of electronic energy loss in graphene and BN sheet by means of time-dependent density functional theory. J Phys Condens Matter 27:025401. https://doi.org/10.1088/0953-8984/27/2/025401
Ziegler JF (2004) Srim-2003. Nucl Instrum Methods Phys Res B 219–220:1027–1036. https://doi.org/10.1016/j.nimb.2004.01.208
Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter, vol 1. Pergamon Press, New York
Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM: the stopping and range of ions in matter. Cadence Design Systems. ISBN-10: 096542071X; ISBN-13: 978-0965420716
Ziegler JF, Biersack JP, Ziegler MD (2010) SRIM - The stopping and range of ions in matter. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 268:1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091
Acknowledgments
The authors acknowledge support from the United States National Science Foundation Grant No. DMR-1120901, and support from the U.S. DOE Office of Nuclear Energy under Grant No. DE-NE0008827. M. P. S. specifically acknowledges support from the U.S. National Science Foundation’s CAREER award program under Grant No. DMR-1654548. The authors thank Dr. Yong-Gang Li from the Institute of Solid State Physics of the Chinese Academy of Sciences and Prof. Benoit Forget from MIT for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this entry
Cite this entry
Li, J., Yang, Y., Short, M.P. (2019). More Efficient and Accurate Simulations of Primary Radiation Damage in Materials with Nanosized Microstructural Features or~Ion~Beams. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_115-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-50257-1_115-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50257-1
Online ISBN: 978-3-319-50257-1
eBook Packages: Springer Reference Physics & AstronomyReference Module Physical and Materials Science
Chapter History
-
Latest
More Efficient and Accurate Simulations of Primary Radiation Damage in Materials with Nanosized Microstructural Features or Ion Beams- Published:
- 07 January 2019
DOI: https://doi.org/10.1007/978-3-319-50257-1_115-2
-
Original
More Efficient and Accurate Simulations of Primary Radiation Damage in Materials with Nanosized Microstructural Features or~Ion~Beams- Published:
- 25 October 2018
DOI: https://doi.org/10.1007/978-3-319-50257-1_115-1