Hierarchical MWW Zeolites by Soft and Hard Template Routes

Living reference work entry

Abstract

This chapter will discuss the exciting area of nanomaterial engineering that focuses on obtaining porous solids with improved efficiency in catalysis. Lamellar zeolites, also called two-dimensional zeolites, with MWW topologies are potential candidates to substitute the commercial zeolitic catalysts produced thus far. Advances to obtain MWW zeolites with hierarchical porous structures by soft and hard templating approaches will be presented. The hierarchical concept is based on the generation of mesoporous regions combined with the microporosity of zeolites. The aim is to alleviate diffusional limitations encountered by large molecules (reactants, intermediates, and products) that cannot access the microporous channels (<2 nm) of the zeolites, which decrease their catalytic activities. The details and preparation procedures to obtain hierarchical MWW zeolites by soft and hard templates as well as the chemistry associated with the interactions between templates and the zeolite structures will be described.

References

  1. 1.
    Tanabe K, Hölderich WF (1999) Industrial application of solid acid–base catalysts. Appl Catal A Gen 181:399–434.  https://doi.org/10.1016/S0926-860X(98)00397-4 CrossRefGoogle Scholar
  2. 2.
    Vartuli JC, Degnan TF Jr (2007) Applications of mesoporous molecular sieves in catalysis and separations. In: HvBAC JČ, Ferdi S (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 837–854.  https://doi.org/10.1016/S0167-2991(07)80811-1 Google Scholar
  3. 3.
    Knaebel KS, Kandybin A (1993) Pressure swing adsorption system to purify oxygen. US Patent 5226933 AGoogle Scholar
  4. 4.
    Li J, Cao W, Lv X-X, Jiang L, Li Y-J, Li W-Z, S-Z C, Li X-Y (2013) Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro. Acta Pharmacol Sin 34:367–372.  https://doi.org/10.1038/aps.2012.159 CrossRefGoogle Scholar
  5. 5.
    Calgaroto C, Scherer RP, Calgaroto S, Oliveira JV, de Oliveira D, Pergher SBC (2011) Immobilization of porcine pancreatic lipase in zeolite MCM 22 with different Si/al ratios. Appl Catal A Gen 394:101–104.  https://doi.org/10.1016/j.apcata.2010.12.032 CrossRefGoogle Scholar
  6. 6.
    Chen W, Sammynaiken R, Huang Y (2000) Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. J Appl Phys 88:1424–1431.  https://doi.org/10.1063/1.373834 CrossRefGoogle Scholar
  7. 7.
    Gupta SK (2009) Topical delivery of biological and cosmetic agents by Zeolites. US Patent 20090130154 A1Google Scholar
  8. 8.
    Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29.  https://doi.org/10.1016/j.tifs.2011.10.001 CrossRefGoogle Scholar
  9. 9.
    Perego C, Bosetti A (2011) Biomass to fuels: the role of zeolite and mesoporous materials. Microporous Mesoporous Mater 144:28–39.  https://doi.org/10.1016/j.micromeso.2010.11.034 CrossRefGoogle Scholar
  10. 10.
    Zones SI (2011) Translating new materials discoveries in zeolite research to commercial manufacture. Microporous Mesoporous Mater 144:1–8.  https://doi.org/10.1016/j.micromeso.2011.03.039 CrossRefGoogle Scholar
  11. 11.
    Bai R, Sun Q, Wang N, Zou Y, Guo G, Iborra S, Corma A, Yu J (2016) Simple quaternary ammonium cations-templated syntheses of extra-large pore Germanosilicate zeolites. Chem Mater 28:6455–6458.  https://doi.org/10.1021/acs.chemmater.6b03179 CrossRefGoogle Scholar
  12. 12.
    Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Directing zeolite structures into hierarchically Nanoporous architectures. Science 333:328–332.  https://doi.org/10.1126/science.1204452 CrossRefGoogle Scholar
  13. 13.
    Garcia-Martinez J, Johnson M, Valla J, Li K, Ying JY (2012) Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Cat Sci Technol 2:987–994.  https://doi.org/10.1039/C2CY00309K CrossRefGoogle Scholar
  14. 14.
    Xiao F-S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, DS S, Schlögl R, Yokoi T, Tatsumi T (2006) Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew Chem 118:3162–3165.  https://doi.org/10.1002/ange.200600241 CrossRefGoogle Scholar
  15. 15.
    Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117.  https://doi.org/10.1021/ja000744c CrossRefGoogle Scholar
  16. 16.
    Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJH (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13:4416–4418.  https://doi.org/10.1021/cm011206h CrossRefGoogle Scholar
  17. 17.
    Janssen AH, Schmidt I, Jacobsen CJH, Koster AJ, de Jong KP (2003) Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater 65:59–75.  https://doi.org/10.1016/j.micromeso.2003.07.003 CrossRefGoogle Scholar
  18. 18.
    Holland BT, Abrams L, Stein A (1999) Dual templating of macroporous silicates with Zeolitic microporous frameworks. J Am Chem Soc 121:4308–4309.  https://doi.org/10.1021/ja990425p CrossRefGoogle Scholar
  19. 19.
    Xu L, Wu S, Guan J, Wang H, Ma Y, Song K, Xu H, Xing H, Xu C, Wang Z, Kan Q (2008) Synthesis, characterization of hierarchical ZSM-5 zeolite catalyst and its catalytic performance for phenol tert-butylation reaction. Catal Commun 9:1272–1276.  https://doi.org/10.1016/j.catcom.2007.11.018 CrossRefGoogle Scholar
  20. 20.
    Liu Y, Zhang W, Liu Z, Xu S, Wang Y, Xie Z, Han X, Bao X (2008) Direct observation of the Mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. J Phys Chem C 112:15375–15381.  https://doi.org/10.1021/jp802813x CrossRefGoogle Scholar
  21. 21.
    Zhang B, Davis SA, Mendelson NH, Mann S (2000) Bacterial templating of zeolite fibres with hierarchical structure. Chem Commun 0:781–782.  https://doi.org/10.1039/B001528H CrossRefGoogle Scholar
  22. 22.
    Katsuki H, Furuta S, Watari T, Komarneni S (2005) ZSM-5 zeolite/porous carbon composite: conventional- and microwave-hydrothermal synthesis from carbonized rice husk. Microporous Mesoporous Mater 86:145–151.  https://doi.org/10.1016/j.micromeso.2005.07.010 CrossRefGoogle Scholar
  23. 23.
    Wang Y, Tang Y, Dong A, Wang X, Ren N, Gao Z (2002) Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. J Mater Chem 12:1812–1818.  https://doi.org/10.1039/B201113A CrossRefGoogle Scholar
  24. 24.
    Machoke AG, Beltrán AM, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W (2015) Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Adv Mater 27:1066–1070.  https://doi.org/10.1002/adma.201404493 CrossRefGoogle Scholar
  25. 25.
    Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z (2008) Nanosized CaCO3 as hard template for creation of Intracrystal pores within Silicalite-1 crystal. Chem Mater 20:1134–1139.  https://doi.org/10.1021/cm071385o CrossRefGoogle Scholar
  26. 26.
    Maheshwari S, Jordan E, Kumar S, Bates FS, Penn RL, Shantz DF, Tsapatsis M (2008) Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor. J Am Chem Soc 130:1507–1516.  https://doi.org/10.1021/ja077711i CrossRefGoogle Scholar
  27. 27.
    Corma A, Fornes V, Pergher SB, Maesen TLM, Buglass JG (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396:353–356.  https://doi.org/10.1038/24592 CrossRefGoogle Scholar
  28. 28.
    Roth WJ, Kresge CT, Vartuli JC, Leonowicz ME, Fung AS, McCullen SB (1995) MCM-36: the first pillared molecular sieve with zeolite properties. In: Beyer HGKIK HK, Nagy JB (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 301–308.  https://doi.org/10.1016/S0167-2991(06)81236-X Google Scholar
  29. 29.
    Guisnet M, Costa L, Ribeiro FR (2016) Prevention of zeolite deactivation by coking. J Mol Catal A Chem 305:69–83.  https://doi.org/10.1016/j.molcata.2008.11.012 CrossRefGoogle Scholar
  30. 30.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843.  https://doi.org/10.1021/ja00053a020 CrossRefGoogle Scholar
  31. 31.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  32. 32.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552.  https://doi.org/10.1126/science.279.5350.548 CrossRefGoogle Scholar
  33. 33.
    Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191.  https://doi.org/10.1021/cm00044a016 CrossRefGoogle Scholar
  34. 34.
    Chen C-Y, Burkett SL, Li H-X, Davis ME (1993) Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Mater 2:27–34.  https://doi.org/10.1016/0927-6513(93)80059-4 CrossRefGoogle Scholar
  35. 35.
    Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303.  https://doi.org/10.1126/science.261.5126.1299 CrossRefGoogle Scholar
  36. 36.
    Firouzi A, Kumar D, Bull L, Besier T, Sieger P, Huo Q, Walker S, Zasadzinski J, Glinka C, Nicol J et al (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267:1138–1143.  https://doi.org/10.1126/science.7855591 CrossRefGoogle Scholar
  37. 37.
    Roth WJ, Vartuli JC (2005) Synthesis of mesoporous molecular sieves. In: Ĉejka J, Hv B (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 91–110.  https://doi.org/10.1016/S0167-2991(05)80007-2 Google Scholar
  38. 38.
    Chen L, Horiuchi T, Mori T, Maeda K (1999) Postsynthesis hydrothermal restructuring of M41S mesoporous molecular sieves in water. J Phys Chem B 103:1216–1222.  https://doi.org/10.1021/jp983100o CrossRefGoogle Scholar
  39. 39.
    Chen LY, Ping Z, Chuah GK, Jaenicke S, Simon G (1999) A comparison of post-synthesis alumination and sol-gel synthesis of MCM-41 with high framework aluminum content. Microporous Mesoporous Mater 27:231–242.  https://doi.org/10.1016/S1387-1811(98)00257-1 CrossRefGoogle Scholar
  40. 40.
    Corma A, Grande MS, Gonzalez-Alfaro V, Orchilles AV (1996) Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite. J Catal 159:375–382.  https://doi.org/10.1006/jcat.1996.0100 CrossRefGoogle Scholar
  41. 41.
    Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264:1910–1913.  https://doi.org/10.1126/science.264.5167.1910 CrossRefGoogle Scholar
  42. 42.
    Lawton SL, Fung AS, Kennedy GJ, Alemany LB, Chang CD, Hatzikos GH, Lissy DN, Rubin MK, Timken H-KC, Steuernagel S, Woessner DE (1996) Zeolite MCM-49: a three-dimensional MCM-22 analogue synthesized by in situ crystallization. J Phys Chem 100:3788–3798.  https://doi.org/10.1021/jp952871e CrossRefGoogle Scholar
  43. 43.
    Meloni D, Laforge S, Martin D, Guisnet M, Rombi E, Solinas V (2001) Acidic and catalytic properties of H-MCM-22 zeolites: 1. Characterization of the acidity by pyridine adsorption. Appl Catal A Gen 215:55–66.  https://doi.org/10.1016/S0926-860X(01)00501-4 CrossRefGoogle Scholar
  44. 44.
    Roth WJ (2006) Cation size effects in swelling of the layered zeolite precursor MCM-22-P. Pol J Chem 80:703–708Google Scholar
  45. 45.
    Roth WJ, Dorset DL (2011) Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous Mesoporous Mater 142:32–36.  https://doi.org/10.1016/j.micromeso.2010.11.007 CrossRefGoogle Scholar
  46. 46.
    Schwanke AJ, Pergher S, Díaz U, Corma A (2017) The influence of swelling agents molecular dimensions on lamellar morphology of MWW-type zeolites active for fructose conversion. Microporous Mesoporous Mater.  https://doi.org/10.1016/j.micromeso.2016.11.007
  47. 47.
    Kresge CT, Roth WJ, Simmons KG, Vartuli JC (1992) Layered oxide materials and swollen and pillared forms thereof. WO Patent 1992011934 A1Google Scholar
  48. 48.
    Corma A, Fornés V, Chica A, Diaz U (1999) Acid oxide with micro and mesoporous characteristics: ITQ-36 ESP Patent 9802283Google Scholar
  49. 49.
    Roth WJ, Kresge CT (2011) Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous Mesoporous Mater 144:158–161.  https://doi.org/10.1016/j.micromeso.2011.04.006 CrossRefGoogle Scholar
  50. 50.
    Mazur M, Chlubná-Eliášová P, Roth WJ, Čejka J (2014) Intercalation chemistry of layered zeolite precursor IPC-1P. Catal Today 227:37–44.  https://doi.org/10.1016/j.cattod.2013.10.051 CrossRefGoogle Scholar
  51. 51.
    Corma A, Diaz U, Domine ME, Fornés V (2000) New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2. J Am Chem Soc 122(12):2804–2809.  https://doi.org/10.1021/ja9938130 CrossRefGoogle Scholar
  52. 52.
    Corma A, Fornes V, Diaz U (2001) ITQ-18 a new delaminated stable zeolite. Chem Commun 24:2642–2643.  https://doi.org/10.1039/B108777K CrossRefGoogle Scholar
  53. 53.
    Roth WJ, Chlubná P, Kubů M, Vitvarová D (2013) Swelling of MCM-56 and MCM-22P with a new medium – surfactant–tetramethylammonium hydroxide mixtures. Catal Today 204:8–14.  https://doi.org/10.1016/j.cattod.2012.07.040 CrossRefGoogle Scholar
  54. 54.
    Maheshwari S, Martínez C, Teresa Portilla M, Llopis FJ, Corma A, Tsapatsis M (2010) Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36. J Catal 272:298–308.  https://doi.org/10.1016/j.jcat.2010.04.011 CrossRefGoogle Scholar
  55. 55.
    Schwanke AJ, Díaz U, Corma A, Pergher S (2017) Recyclable swelling solutions for friendly preparation of pillared MWW-type zeolites. Microporous Mesoporous Mater 253:91–95.  https://doi.org/10.1016/j.micromeso.2017.06.045 CrossRefGoogle Scholar
  56. 56.
    Roth WJ, Čejka J, Millini R, Montanari E, Gil B, Kubu M (2015) Swelling and interlayer chemistry of layered MWW zeolites MCM-22 and MCM-56 with high al content. Chem Mater 27:4620–4629.  https://doi.org/10.1021/acs.chemmater.5b01030 CrossRefGoogle Scholar
  57. 57.
    Roth WJ, Vartuli JC, Kresge CT (2000) Characterization of mesoporous molecular sieves: differences between M41s and pillared layered zeolites. In: Abdelhamid S, Mietek J (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 501–508.  https://doi.org/10.1016/S0167-2991(00)80251-7 Google Scholar
  58. 58.
    Barth J-O, Kornatowski J, Lercher* JA (2002) Synthesis of new MCM-36 derivatives pillared with alumina or magnesia-alumina. J Mater Chem 12(2):369–373.  https://doi.org/10.1039/B104824B CrossRefGoogle Scholar
  59. 59.
    Barth J-O, Jentys A, Iliopoulou EF, Vasalos IA, Lercher JA (2004) Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. J Catal 227(1):117–129.  https://doi.org/10.1016/j.jcat.2004.06.021 CrossRefGoogle Scholar
  60. 60.
    Jin F, Huang S, Cheng S, Wu Y, Chang C-C, Huang Y-W (2015) The influences of Al species and Ti species on the catalytic epoxidation over Si/Ti-pillared MCM-36 synthesized from MCM-22. Cat Sci Technol 5:3007–3016.  https://doi.org/10.1039/C5CY00145E CrossRefGoogle Scholar
  61. 61.
    Corma A, Díaz U, García T, Sastre G, Velty A (2010) Multifunctional hybrid organic−inorganic catalytic materials with a hierarchical system of well-defined micro- and Mesopores. J Am Chem Soc 132:15011–15021.  https://doi.org/10.1021/ja106272z CrossRefGoogle Scholar
  62. 62.
    Gao N, Xie S, Liu S, Xin W, Gao Y, Li X, Wei H, Liu H, Xu L (2015) Development of hierarchical MCM-49 zeolite with intracrystalline mesopores and improved catalytic performance in liquid alkylation of benzene with ethylene. Microporous Mesoporous Mater 212:1–7.  https://doi.org/10.1016/j.micromeso.2015.03.009 CrossRefGoogle Scholar
  63. 63.
    van Miltenburg A, Pawlesa J, Bouzga AM, Žilková N, Čejka J, Stöcker M (2009) Alkaline modification of MCM-22 to a 3D interconnected pore system and its application in toluene disproportionation and alkylation. Top Catal 52:1190–1202.  https://doi.org/10.1007/s11244-009-9278-1 CrossRefGoogle Scholar
  64. 64.
    Xu L, Ji X, Li S, Zhou Z, Du X, Sun J, Deng F, Che S, Wu P (2016) Self-assembly of cetyltrimethylammonium bromide and lamellar zeolite precursor for the preparation of hierarchical MWW zeolite. Chem Mater 28:4512–4521.  https://doi.org/10.1021/acs.chemmater.6b02155 CrossRefGoogle Scholar
  65. 65.
    Margarit VJ, Martínez-Armero ME, Navarro MT, Martínez C, Corma A (2015) Direct dual-template synthesis of MWW zeolite monolayers. Angew Chem Int Ed 54:13724–13728.  https://doi.org/10.1002/anie.201506822 CrossRefGoogle Scholar
  66. 66.
    Luo HY, Michaelis VK, Hodges S, Griffin RG, Roman-Leshkov Y (2015) One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chem Sci 6:6320–6324.  https://doi.org/10.1039/C5SC01912E CrossRefGoogle Scholar
  67. 67.
    Chu N, Wang J, Zhang Y, Yang J, Lu J, Yin D (2010) Nestlike hollow hierarchical MCM-22 microspheres: synthesis and exceptional catalytic properties. Chem Mater 22:2757–2763.  https://doi.org/10.1021/cm903645p CrossRefGoogle Scholar
  68. 68.
    Ogura M, Inoue K, Yamaguchi T (2011) A mechanistic study on the synthesis of MCM-22 from SBA-15 by dry gel conversion to form a micro- and mesoporous composite. Catal Today 168:118–123.  https://doi.org/10.1016/j.cattod.2010.12.046 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratório de Peneiras Moleculares (LABPEMOL)Universidade Federal do Rio Grande do Norte – UFRNNatalBrazil

Personalised recommendations