Skip to main content

CO2 Sequestration: Processes and Methodologies

Handbook of Ecomaterials

Abstract

Rapidly growing economy and its consequence of relying heavily on the fossil fuels, for power generation, accounts for the major CO2 pollutant in the atmosphere. Natural carbon cycle process will not be effective in reducing the pollutant content, as the amount and rate of CO2 dissipation raise at a drastic rate. This alarming situation urgently requires technologies for carbon dioxide capture and sequestering (CCS). With the development of technologies every day, the amount of CO2 emission is expected to increase steeply, which necessitates more technologies to sequester CO2 with a target of 50 ppm by 2050. CCS involves the capture of gas at some stage of the industrial process followed by pressurization and transporting it to stable geological sites like saline aquifers, depleted oil and gas fields, deep coal seams where it can be trapped for thousands of years. CO2 sequestration requires multiple fundamental R&D approaches and significant breakthroughs. The purpose of this review is to have an integrated analysis of the carbon sequestration process including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.

Depending on the source of emission, different techniques and methodologies adopted by the scientific community were analyzed and discussed. A brief description of the best practices and techniques for CO2 capturing like absorption, adsorption, cryogenic, and membranes will be reviewed. A comparative study on the same will be analyzed based on their performance, efficiency, regeneration, adsorption rate, the volume of adsorption, cost, and energy required for regeneration. Some of the prerequisites for sequestering the captured carbon dioxide are safety, environmentally benign, effective, economical, and acceptable to the public. Natural sequestration methods include plantation, soil carbon sequestration, and CH4-CO2 reforming. Industrially acceptable sequestration process involves isolating the captured gas into places which are nonaccessible to living creatures which include basically geologic, oceanic, and terrestrial dumping sites. All the three geoengineering techniques and their subdivisions will be discussed in detail with up to date improvisations and results. Moreover, the concerns related to potential leakages while transporting supercritical CO2, uncertainty in terms of quantification of storage potential, accompanied by monitoring and engineering challenges have to be given prior attention in developing any sequestration process, which this review will give an overall picture and suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Centre for Sustainable Systems, University of Michigan (2016) Greenhouse Gases Factsheet. Pub. No. CSS05–21 http://css.umich.edu/sites/default/files/Greenhouse_Gases_Factsheet_CSS05-21_0.pdf

  2. Stankiewicz A, Van Gerven T (2009) Structure, energy, synergy, time-the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474

    Article  Google Scholar 

  3. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. The contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  4. DOE US (2008) Carbon cycling and bio sequestration: integrating biology and climate through systems science. Report from the March 2008 Workshop, DOE/SC108

    Google Scholar 

  5. U.S. Department of Energy Office of Science (2010) Volcanic gases and climate change overview. U.S. Geological Survey. http://volcanoes.usgs.gov/hazards/gas/climate.php

  6. Gerlach T (2011) Volcanic versus anthropogenic carbon dioxide. EOS Trans Am Geophys Union 92:201–201. https://doi.org/10.1029/2011EO240001

    Article  Google Scholar 

  7. Le Quéré C, Jain AK, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, Huntingford C, Friedlingstein P, Andres RJ, Boden T, Jourdain C, Conway T, Houghton RA, House JI, Marland G, Peters GP, Van Der Werf G, Ahlström A, Andrew RM, Bopp L, Canadell JG, Kato E, Ciais P, Doney SC, Enright C, Zeng N, Keeling RF, Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B (2012) The global carbon budget 1959–2011. Earth System Science Data Discussions 5(2):1107–1157. https://doi.org/10.5194/essdd-5-1107-2012

    Article  Google Scholar 

  8. IEA (2012) CO2 emissions from fuel combustion 2012. OECD Publishing, Paris. https://doi.org/10.1787/co2_fuel-2012-en

    Book  Google Scholar 

  9. Defra UK (2014) Government greenhouse gas conversion factors for company reporting. U.K. Department for Environment, Food& Rural Affairs, London. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2014

    Google Scholar 

  10. Harrould-Kolieb E, Savitz J (2010) Shipping solutions: technological and operational methods available to reduce CO2. Oceana, Washington, DC

    Google Scholar 

  11. Harrould-Kolieb E (2008) Shipping impacts on climate: a source with solutions. Oceana, Washington, DC

    Google Scholar 

  12. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:1645–1669. https://doi.org/10.1039/C004106H

    Article  Google Scholar 

  13. Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust Sci 38:630–671. https://doi.org/10.1016/j.pecs.2012.03.003

    Article  Google Scholar 

  14. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305. https://doi.org/10.1039/C2EE03403D

    Article  Google Scholar 

  15. White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological formations – coal beds and deep saline aquifers. J Air Waste Manage Assoc 53:645–715

    Article  Google Scholar 

  16. Li H, Jakobsen JP, Wilhelmsen Ø, Yan J (2011a) PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: a review of available experimental data and theoretical models. Appl Energy 88:3567–3579. https://doi.org/10.1016/j.apenergy.2011.03.052

    Article  Google Scholar 

  17. Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447. https://doi.org/10.1016/j.apenergy.2012.09.009

    Article  Google Scholar 

  18. Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Quéré CL, Marland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2 °C. Nature Clim Change 3:4–6. https://doi.org/10.1038/nclimate1783

    Article  Google Scholar 

  19. Edenhofer O, Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Stechow CV, Zwickel T (2014) IPCC climate change 2014: mitigation of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  20. Metz B, Davidson O, Swart R, Pan J (2001) IPCC, 2001: climate change 2001 – mitigation. The third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  21. National Research Council. America’s climate choices (2010) Limiting the magnitude of future climate change. National Academies Press, Washington, DC

    Google Scholar 

  22. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Climate change 2007. Cambridge University Press, New York

    Google Scholar 

  23. Edmonds J (2008) The potential role of CCS in climate stabilization. In: Proceedings of the 9th international conference on greenhouse gas control technologies. Washington

    Google Scholar 

  24. Metz B, Davidson OR, Bosch PR, Dave R, Meyers LA (2007) Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change climate change 2007: mitigation. Cambridge University Press, New York

    Google Scholar 

  25. Victor DG, Akimoto K, Kaya Y, Yamaguchi M, Cullenward D, Hepburn C (2017) Prove Paris was more than paper promises. Nature 548:25–27

    Article  Google Scholar 

  26. Cappiello D (2014) These 6 countries are responsible for 60% of CO2 emissions. Business insider. http://www.businessinsider.com/these-6-countries-are-responsible-for-60-of-co2-emissions-2014-12?IR=T

  27. Larsen J, Larsen K, Herndon W, Mohan S (2016) Taking Stock: Progress toward Meeting US Climate Goals. http://rhg.com/reports/progress-toward-meeting-us-climate-goals

  28. David GV, Keigo A, Yoichi K, Mitsutsune Y, Danny C, Cameron H (2017) Prove Paris was more than paper promises. Nature 548(7665):25–27. https://doi.org/10.1038/548025a

    Article  Google Scholar 

  29. Drummond P, Ekins P (2017) ost effective decarbonization in the EU: an overview of policy suitability. Clim Pol 17:S51–S71

    Article  Google Scholar 

  30. IEA Greenhouse Gas R&D Programme (IEA GHG) (2008) A regional assessment of the potential for CO2 storage in the Indian subcontinent. IEA Greenhouse Gas R&D Programme (IEA GHG), Cheltenham

    Google Scholar 

  31. Jones C, Robertsona E, Arorab V, Friedlingsteinc P, Shevliakovad E, Boppe L, Brovkinf V, Hajimag T, Katoh E, Kawamiyag M, Liddicoata S, Lindsayi K, Reickf CH, Roelandtj C, Segschneiderf J, Tjiputraj J (2013) Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J Clim 26:4398. https://doi.org/10.1175/JCLI-D-12-00554.1

    Article  Google Scholar 

  32. http://yosemite.epa.gov/opa/admpress.nsf/0/08D11A451131BCA585257685005BF252. Accessed 23 May 2012

  33. Suess HE (1955) Radiocarbon concentration in modern wood. Science 122:415–417. https://doi.org/10.1126/science.122.3166.415-a

    Article  Google Scholar 

  34. Ghoiem AF (2011) Needs, resources and climate change: clean and efficient conversion technologies. Prog Energy Combust Sci 37:15–51. https://doi.org/10.1016/j.pecs.2010.02.006

    Article  Google Scholar 

  35. NRC (2013) Abrupt impacts of climate change: anticipating surprises. The National Academies Press, Washington, DC

    Google Scholar 

  36. Pimm SL (2009) Climate disruption and biodiversity. Curr Biol 19:R595–R601. https://doi.org/10.1016/j.cub.2009.05.055

    Article  Google Scholar 

  37. Staudinger MD, Grimm NB, Staudt A, Carter SL, Stuart FS, Kareiva P, Ruckelshaus M, Stein BA (2012) Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment. U.S. Global Change Research Program, Washington, DC

    Google Scholar 

  38. Lobell DB, Field CB (2007) Global scale climate – crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1). https://doi.org/10.1088/1748-9326/2/1/014002

  39. NRC (2013a) Induced seismicity potential in energy technologies. The National Academies Press, Washington, DC

    Google Scholar 

  40. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011a) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. https://doi.org/10.1126/science.1206432

    Article  Google Scholar 

  41. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–639. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  42. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

    Article  Google Scholar 

  43. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Chang 3:919–925. https://doi.org/10.1038/nclimate1958

    Article  Google Scholar 

  44. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. https://doi.org/10.1038/nature01333

    Article  Google Scholar 

  45. Gill JA, Alves JA, Sutherland WJ, Appleton GF, Potts PM, Gunnarsson TG (2013) Why is thetiming of bird migration advancing when individuals are not? Proc R Soc B 281(1774). https://doi.org/10.1098/rspb.2013.2161

  46. Boston Climate Preparedness Task Force (2013) Climate ready Boston: municipal vulnerability to climate change. Environment and Energy Services, Boston

    Google Scholar 

  47. National Research Council (2010) Advancing the science of climate change. The National Academies Press, Washington, DC

    Google Scholar 

  48. Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there – energy technology transformation pathways in the EMF27 scenarios. Clim Chang 123:369–382

    Article  Google Scholar 

  49. Edmonds J (2013) Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2capture and storage? Clim. Change 118:29–43

    Google Scholar 

  50. Van Vuuren DP (2013) The role of negative CO2emissions for reaching 2 °C – insights from integrated assessment modelling. Clim Chang 118:15–27

    Article  Google Scholar 

  51. Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83. https://doi.org/10.1038/nature11787

    Article  Google Scholar 

  52. Clarke L (2014) Chap. 6, assessing transformation pathways. In: Edenhofer O (ed) Climate change 2014: mitigation of climate change. IPCC, Cambridge University Press, Genf

    Google Scholar 

  53. Riahi K (2015) Locked into Copenhagen pledges – implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol Forecast Soc 90:8–23

    Article  Google Scholar 

  54. Obersteiner M (2001) Managing climate risk. Science 294:786–787

    Article  Google Scholar 

  55. Creutzig F (2015) Bioenergy and climate change mitigation: an assessment. Global Change Biol Bioenergy 7:916–944

    Article  Google Scholar 

  56. Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nat Geosci 4:514–518

    Article  Google Scholar 

  57. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  Google Scholar 

  58. Jackson RB (2008) Protecting climate with forests. Environ Res Lett 3:044006

    Article  Google Scholar 

  59. Keith D (2009) Why capture CO2 from the atmosphere. Science 325:1654–1655

    Article  Google Scholar 

  60. Socolow R (2011) Direct air capture of CO2 with chemicals: A technology assessment for the APS panel on public affairs. Report by American Physical Society, https://www.aps.org/policy/reports/assessments/upload/dac2011.pdf

  61. Smith P (2012) Soils and climate change. Curr Opin Environ Sust 4:539–544

    Article  Google Scholar 

  62. Powlson DS (2014) Limited potential of no-till agriculture for climate change mitigation. Nature Clim Change 4:678–683

    Article  Google Scholar 

  63. Smith P (2008) Greenhouse gas mitigation in agriculture. Phil Trans R Soc B 363:789–813

    Article  Google Scholar 

  64. Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  Google Scholar 

  65. Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Clim Chang 74:349–354

    Article  Google Scholar 

  66. Rau GH, Knauss KG, Langer WH, Caldeira K (2007) Reducing energy-related CO2emissions using accelerated weathering of limestone. Energy 32:1471–1477

    Article  Google Scholar 

  67. KöhlerP HJ, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc Natl Acad Sci U S A 107:20228–20233

    Article  Google Scholar 

  68. Hartmann J, Kempe S (2008) What is the maximum potential for CO2sequestration by “stimulated” weathering on the global scale? Naturwissenschaften 95:1159–1164

    Article  Google Scholar 

  69. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60

    Article  Google Scholar 

  70. Joos F, Sarmiento JL, SiegenthalerU (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2concentrations. Nature 349:772–775

    Article  Google Scholar 

  71. Schiermeier Q (2007) Convention discourages ocean fertilization. Nature. https://doi.org/10.1038/news.2007.230

  72. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28. https://doi.org/10.1016/S0961-9534(02)00185-X

    Article  Google Scholar 

  73. Baumert K, Herzog T, Pershing J (2005) Navigating the numbers: greenhouse gases and international climate change agreements. World Resources Institute, Washington, DC

    Google Scholar 

  74. Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air and Soil Pollution 64(1–2):83–120. https://doi.org/10.1007/Bf00477097

    Article  Google Scholar 

  75. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6(3):317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  76. Wei XR, Shao MG, Gale W, Li LH (2014) Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep 4. https://doi.org/10.1038/Srep04062

  77. Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am J Sci 283(7):641–683

    Article  Google Scholar 

  78. Geerlings H, Zevenhoven R (2013) CO2 mineralization-bridge between storage and utilization of CO2. Annual Review of Chemical and Biomolecular Engineering 4(4):103–117. https://doi.org/10.1146/annurev-chembioeng-062011-080951

    Article  Google Scholar 

  79. Hartmann J, West AJ, Renforth P, Kohler P, De La Rocha CL, Wolf-Gladrow DA, Durr HH, Scheffran J (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophys 51(2):113–149. https://doi.org/10.1002/Rog.20004

    Article  Google Scholar 

  80. Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109:364–392. https://doi.org/10.1016/j.petrol.2013.03.013

    Article  Google Scholar 

  81. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 37:117–134

    Article  Google Scholar 

  82. Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res Oceans 113(C4). https://doi.org/10.1029/2007jc004373

  83. Rau GH (2011) CO2 mitigation via capture and chemical conversion in seawater. Environ Sci Technol 45(3):1088–1092. https://doi.org/10.1021/Es102671x

    Article  Google Scholar 

  84. Rau GH, Caldeira K (1999) Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energy Convers Manag 40(17):1803–1813. https://doi.org/10.1016/S0196-8904(99)00071-0

    Article  Google Scholar 

  85. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen J, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Meso scale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617. https://doi.org/10.1126/science.1131669

    Article  Google Scholar 

  86. de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, Bakker DCE, Bozec Y, Barber RT, Brzezinski MA, Buesseler KO, Boye M, Croot PL, Gervais F, Gorbunov MY, Harrison PJ, Hiscock WT, Laan P, Lancelot C, Law CS, Levasseur M, Marchetti A, Millero FJ, Nishioka J, Nojiri Y, van Oijen T, Riebesell U, Rijkenberg MJA, Saito H, Takeda S, Timmermans KR, Veldhuis MJW, Waite AM, Wong CS (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. Journal of Geophysical Research C: Oceans 110(9):1–24. https://doi.org/10.1029/2004JC002601

    Google Scholar 

  87. Smith P (2016a) Biophysical and economic limits to negative CO2 emissions Nat. Clim Chang 6:42–50

    Article  Google Scholar 

  88. Smith P (2016b) Soil carbon sequestration and biochar as negative emission technologies glob. Change Biol 22:1315–1324

    Article  Google Scholar 

  89. Kaya Y (1995) The role of CO2 removal and disposal. Energy Convers Manag 36(6–9):375–380

    Article  Google Scholar 

  90. Yu C-H, Huang C-H, Tan C-S (2012a) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    Google Scholar 

  91. Littel RJ, Versteeg GF, van Swaaij WPM (1991) Physical absorption into non-aqueous solutions in a stirred cell reactor. Chem Eng Sci 46:3308–3313

    Article  Google Scholar 

  92. Chiesa P, Consonni SP (1999) Shift reactors and physical absorption for low-CO2 emission IGCCs. J Eng Gas Turbines Power 121:295–305

    Article  Google Scholar 

  93. Bishnoi S, Rochelle GT (2000a) Absorption of carbon dioxide into aqueous Piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55:5531–5543

    Article  Google Scholar 

  94. Aroonwilas A, Veawab A (2004) Characterization and comparison of the CO2 absorption performance into single and blended Alkanolamines in a packed column. Ind Eng Chem Res 43:2228–2237

    Article  Google Scholar 

  95. Rochelle GT (2009a) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  Google Scholar 

  96. Harlick PJE, Tezel FH (2004) An experimental adsorbent screening study for CO2 capture from N2. Microporous Mesoporous Mater 76:71–79

    Article  Google Scholar 

  97. Chang FY, Chao KJ, Cheng HH, Tan CS (2009) Adsorption of CO2 onto amine-grafted mesoporous Silicas. Sep. Purify. Technol. 70:87–95

    Article  Google Scholar 

  98. Powell CE, Qiao GG (2006a) Polymeric CO2/N2 gas separation membranes for the capture carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    Article  Google Scholar 

  99. Kaya A, Schumpe A (2005) Surfactant adsorption rather than “shuttle effect”? Chem Eng Sci 60(22):6504

    Article  Google Scholar 

  100. Demmink JF, Mehra A, Beenackers AACM (1998) Gas absorption in the presence of particles showing interfacial affinity: the case of fine sulphur precipitates. Chem Eng Sci 53(16):2885

    Article  Google Scholar 

  101. Dagaonkar MV, Heeres HJ, AACM B, Pangarkar VG (2003) The application of fine TiO2 particles for enhanced gas absorption. Chem Eng J 92(1–3):151

    Article  Google Scholar 

  102. Vinke H, Hamersma PJ, Fortuin JMH (1993) Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles. Chem Eng Sci 48(12):2197

    Article  Google Scholar 

  103. Ruthiya KC, Kuster BFM, Schouten JC (2003) Gas-liquid mass transfer enhancement in a surface aeration stirred slurry reactors can. J Chem Eng 81(5):632

    Google Scholar 

  104. Wimmers OJ, Fortuin JMN (1988a) The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors – I. Investigation of particle-to bubble adhesion using the bubble pick-up method. Chem Eng Sci 43(2):303

    Article  Google Scholar 

  105. Wimmers OJ, Fortuin JMN (1988b) The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors – II. Determination of the enhancement in a bubble-containing slurry reactor. Chem Eng Sci 43(2):313

    Article  Google Scholar 

  106. Tsai WT, Hsu HC, Su TY, Lin KY, Lin CM (2006) Adsorption characteristics of bisphenol-a in aqueous solutions onto hydrophobic zeolite. J Colloid Interface Sci 299(2):513

    Article  Google Scholar 

  107. Lu SM, Ma YG, Zhu CY, Shen SH, He Q (2010a) The effect of hydrophobic modification of zeolite on CO2 absorption enhancement. Chin J Chem Eng 17(1):36

    Article  Google Scholar 

  108. Lu SM, Ma YG, Shen SH, Zhu CY (2010b) The effect of hydrophobic modification of zeolites on CO2 absorption in different solvents. Braz J Chem Eng 27(2):327–338

    Article  Google Scholar 

  109. Van Der Zwaan B, Gerlagh R (2009) Economics of geological CO2 storage and leakage. Clim Chang 93:285–309

    Article  Google Scholar 

  110. Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35:2610–2628

    Article  Google Scholar 

  111. https://bre.com/PDF/A-Comparison-of-Physical-Solvents-for-Acid-Gas-Removal-REVISED.pdf

  112. Sada E, Kumuzawa H, Butt MA (1976) Gas absorption with consecutive chemical reactions: absorption of carbon dioxide into aqueous amine solutions. Can J Chem Eng 54:421–424

    Article  Google Scholar 

  113. Hikita H, Asai S, Katsu Y, Ikuno S (1979) Absorption of carbon dioxide into aqueous mono ethanol amine solutions. AICHE J 25:793–800

    Article  Google Scholar 

  114. Bishnoi S, Rochelle GT (2002) Absorption of carbon dioxide in aqueous Piperazine/ methyl diethanol amine. AICHE J 48:2788–2799

    Article  Google Scholar 

  115. Bishnoi S, Rochelle GT (2000b) Absorption of carbon dioxide into aqueous Piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55:5531–5543

    Article  Google Scholar 

  116. Xiao J, Li CW, Li MH (2000) Kinetics of absorption of carbon dioxide into aqueous solutions of 2-Amino-2-methyl-1-propanol + mono ethanol amine. Chem Eng Sci 55:161–175

    Article  Google Scholar 

  117. Liao CH, Li MH (2002) Kinetics of absorption of carbon dioxide into aqueous solutions of Monoethanolamine + N-Methyldiethanolamine. Chem Eng Sci 57:4569–4582

    Article  Google Scholar 

  118. Sartori G, Savage DW (1983) Sterically hindered amines for carbondioxide removal from gases. Ind Eng Chem Fundam 2:239–249

    Article  Google Scholar 

  119. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC (2013) Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA and AMP solutions. Bull Kor Chem Soc 34:783–787

    Article  Google Scholar 

  120. Tontiwachwuthikul P, Meisen A, Lim CJ (1992) CO2 absorption by NaOH, mono- ethanolamine and 2-amino-2-methyl-1-propanolsolutions in a packed column. Chem Eng Sci 47:381–390

    Article  Google Scholar 

  121. Aboudheir A, Tontiwachwuthikul P, Idem R (2006) Rigorous model for predicting the behaviour of CO2 absorption into AMP in packed-bed absorption columns. Ind Eng Chem Res 45:2553–2557

    Article  Google Scholar 

  122. Alper E (1990) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2- methyl-1-propanol and carbondioxide. Ind Eng Chem Res 29:1725–1728

    Article  Google Scholar 

  123. Freeman SA, Davis J, Rochelle GT (2010a) Degradation of aqueous Piperazine in carbon dioxide. Int J Greenhouse Gas Control 4:756–761

    Article  Google Scholar 

  124. Freeman SA, Dugas RD, Wangener HV, Rochelle GT (2010b) Carbon dioxide capture with concentrated, aqueous Piperazine. Int J Greenhouse Gas Control 4:119–124

    Article  Google Scholar 

  125. Goff GS, Rochelle GT (2006) Oxidation inhibitors for copper and iron catalyzed degradation of Monoethanolamine in CO2 capture processes. Ind Eng Chem Res 45:2513–2521

    Article  Google Scholar 

  126. Chakravarti S, Gupta A, Hunek B (2001) Advanced technology for the capture of carbon dioxide from flue gases. First national conference on carbon sequestration, Washington, DC

    Google Scholar 

  127. Sexton AJ, Rochelle GT (2011) Reaction products from oxidative degradation of Monoethanolamine. Ind Eng Chem Res 50(2):667–673

    Article  Google Scholar 

  128. Davis J, Rochelle GT (2009) Thermal degradation of Monoethanolamine at stripper conditions. Energy Procedia 1(1):327–333

    Article  Google Scholar 

  129. Rochelle GT (2009b) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  Google Scholar 

  130. Bishnoi S, Rochelle GT (2000c) The physical and chemical solubility of carbondioxide in aqueous methyldiethanolamine. Fluid Phase Equilib 168:241–258

    Article  Google Scholar 

  131. Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT (2010c) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenh Gas Control 4:119–124

    Article  Google Scholar 

  132. Cheng H-H, Tan C-S (2006) Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J Power Sources 162:1431–1436

    Article  Google Scholar 

  133. Xu G-W, Zhang C-F, Qin S-J, Wang Y-W (1992) Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine. Ind Eng Chem Res 31:921–927

    Article  Google Scholar 

  134. Notz R, Asprion N, Clausen I, Hasse H (2007) Selection and pilot plant tests of new absorbents for post-combustion carbondioxide capture. Chem Eng Res Des 85:510–515

    Article  Google Scholar 

  135. Chen X, Closmann F, Rochelle GT (2011b) Accurate screening of amines by the wetted wall column. Energy Procedia 4:101–108

    Article  Google Scholar 

  136. Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A (2011) Aqueous piperazine as the new standard for CO2 capture technology. Chem Eng J 171:725–733

    Article  Google Scholar 

  137. Adeosun A, Abbas Z, Abu-Zahra MRM (2013) Screening and characterization of advanced amine based solvent systems for CO2 post-combustion capture. Energy Procedia 37:300–305

    Article  Google Scholar 

  138. Dash SK, Samanta AN, Bandyopadhyay SS (2014) Simulation and parametric study of post-combustion CO2 capture process using (AMPþPZ) blended solvent. Int J Greenh Gas Control 21:130–139

    Article  Google Scholar 

  139. Abass A, Olajire A (2010a) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35:2610–2628

    Article  Google Scholar 

  140. Gouedard C, Picq D, Launay F, Carrette P-L (2012) Amine degradation in theCO2 capture. I. A review. Int J Greenh Gas Control 10:244–270

    Article  Google Scholar 

  141. Choi W-J, Min B-M, Seo J-B, Park S-W, Oh K-J (2009) Effect of ammonia on the absorption kinetics of carbondioxide into aqueous 2-amino-2-methyl-1-propanol solutions. Ind Eng Chem Res 48:4022–4029

    Article  Google Scholar 

  142. Pellegrini G, Strube R, Manfrida G (2010) Comparative study of chemical absorbents in thepost-combustion CO2 capture. Energy 35:851–857

    Article  Google Scholar 

  143. Puxty G, Rowland R, Attalla M (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chem Eng Sci 65:915–922

    Article  Google Scholar 

  144. Yeh AC, Bai H (1999) Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Sci Total Environ 228:121–133

    Article  Google Scholar 

  145. Zhao B, Su Y, Tao W, Li L, Peng Y (2012) Post-combustionCO2 capture by aqueous ammonia: a state-of-the-art review. Int J Greenh Gas Control 9:355–371

    Article  Google Scholar 

  146. Bollinger R, Hammond M, Sherrick B, Muraskin D, Kozak F, Cage M (2010) CCS project with Alstom’s chilled ammonia process at AEP’s mountaineer plant. Technical report of ALSTOM power systems, pp 1–19

    Google Scholar 

  147. Kozak F, Petig A, Morris E, Rhudy R, Thimsen D (2009) Chilled ammonia process for CO2 capture. Energy Procedia 1:1419–1426

    Article  Google Scholar 

  148. Kumar N, Rao DP (1989) Design of a packed column for absorption of carbon dioxide in hot K2COsolution promoted by arsenious acid. Gas Sep Purif 3:152–155

    Article  Google Scholar 

  149. Le Q, Xu J, Shi Y (1992) The catalytic activity of vanadium pentoxide for the absorption of carbondioxide by potassiumcarbonate solution. Acta Phys -Chim Sin 8:753–759

    Google Scholar 

  150. Ahmadi M, Gomes VG, Ngian K (2008) Advanced modelling in performance optimization for reactive separation in industrial CO2 removal. Sep Pur Technol 63:107–115

    Article  Google Scholar 

  151. Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M (2009) Carbon dioxide post-combustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43(16):6427–6433

    Article  Google Scholar 

  152. Endo K, Nguyen QS, Kentish SE, Stevens GW (2011) The effect of boric acid on the vapour liquid equilibrium of aqueous potassium carbonate. Fluid Phase Equilib 309:109–113

    Article  Google Scholar 

  153. Guo D, Thee H, Silva G, Chen J, Fei W, Kentish SE (2011) Borate catalyzed carbon dioxide hydration via the carbonic anhydrase mechanism. Environ Sci Technol 45:4802–4807

    Article  Google Scholar 

  154. Shen S, Feng X, Zhao R, Ghosh UK, Chen A (2013) Kinetics of CO2 absorption with aqueous potassium carbonate solution. Chem Eng J 222:478–487

    Article  Google Scholar 

  155. Cullinane JT, Rochelle GT (2006) Kinetics of carbon dioxide absorption into aqueous potassium carbonate and piperazine. Ind Eng Chem Res 45:2531–2545

    Article  Google Scholar 

  156. Khodayari A (2010) Experimental and theoretical study of carbon dioxide absorption into potassium carbonate solution promoted with the enzyme. PhD thesis, The university of Illinois at Urbana-Champaign

    Google Scholar 

  157. Lu Y, Ye X, Zhang Z, Khodayari A, Djukadi T (2011) Development of a carbonate absorption-based process for post-combustion CO2 capture: the role of the biocatalyst to promote CO2 absorption rate. Energy Procedia 4:1286–1293

    Article  Google Scholar 

  158. Russo ME, Olivieri G, Marzocchella A, Salatino P, Caramuscio P, Cavaleiro C (2013) Post-combustion CC mediated by carbonicanhydrase. Sep Purif Technol 107:331–339

    Article  Google Scholar 

  159. Lee SC, Choi BY, Lee TJ, Ryu CK, Ahn YS, Kim JC (2006) CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal Today 111:385–390

    Article  Google Scholar 

  160. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109:6366–6374

    Article  Google Scholar 

  161. Bates ED, Mayton RD, Ntai I, Davis JH Jr (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    Article  Google Scholar 

  162. Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang XP (2009) Dual amino-functionalised Phosphonium ionic liquids for CO2 capture. Chem Eur J 15:3003–3011

    Article  Google Scholar 

  163. Camper D, Bara JE, Gin DL, Nobel RD (2008) Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res 47:8496–8498

    Article  Google Scholar 

  164. Zhang F, Fang CG, Wu YT, Wang YT, Li AM, Zhang ZB (2010) Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem Eng J 160:691–697

    Article  Google Scholar 

  165. Heldebrant DJ, Koech PK, Glezakou V-A, Rousseau R, Malhotra D, Cantu DC (2017) Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook. Chem Rev 117:9594–9624

    Article  Google Scholar 

  166. Henni A, Mather AE (1995) The solubility of carbon dioxide in ethyldiethanolamine + methanol + water. J Chem Eng Data 40:493–495

    Article  Google Scholar 

  167. Sada E, Kumazawa H, Ikehara Y, Han ZQ (1989) Chemical kinetics of the reaction of carbon dioxide with Triethanolamine in non-aqueous solvents. Chem Eng J 40:7–12

    Article  Google Scholar 

  168. Oyevaar MH, Fontein HJ, Westerterp KR (1989) Equilibria of carbon dioxide in solutions of Diethanolamine in aqueous ethylene glycol at 298 K. J Chem Eng Data 34:405–408

    Article  Google Scholar 

  169. Im J, Hong SY, Cheon Y, Lee J, Lee JS, Kim HS, Cheong M, Park H (2011) Steric hindrance-induced Zwitter ionic carbonates from Alkanolamines and CO2: highly efficient CO2 absorbents. Energy Environ Sci 4:4284–4289

    Article  Google Scholar 

  170. Cheon Y, Jung YM, Lee J, Kim H, Im J, Cheong M, Kim HS, Park HS (2012) Two-dimensional infrared correlation spectroscopy and principal component analysis on the carbonation of sterically hindered Alkanolamines. Chem Phys Chem 13:3365–3369

    Article  Google Scholar 

  171. Hong SY, Lee JS, Cheong M, Kim HS (2014) Isolation and structural characterization of bicarbonate and carbonate species formed during CO2 absorption/desorption by a hindered Alkanolamine. Energy Procedia 63:2190–2198

    Article  Google Scholar 

  172. Choi YS, Im J, Jeong JK, Hong SY, Jang HG, Cheong M, Lee JS, Kim HS (2014) CO2 absorption and desorption in an aqueous solution of heavily hindered Alkanolamine: structural elucidation of CO2-containing species. Environ Sci Technol 48:4163–4170

    Article  Google Scholar 

  173. Perry RJ, Grocela-Rocha TA, O’Brien MJ, Genovese S, Wood BR, Lewis LN, Lam H, Soloveichik G, Rubinsztajn M, Kniajanski S (2010) Amino silicone solvents for CO2 capture. Chem Sus Chem 3:919–930

    Article  Google Scholar 

  174. Perry RJ, Davis JL (2012) CO2 capture using solutions of Alkanolamines and amino silicones. Energy Fuel 26:2512–2517

    Article  Google Scholar 

  175. O’Brien MJ, Farnum RL, Perry RJ, Genovese SE (2014) Secondary amine functional Disiloxanes as CO2 sorbents. Energy Fuel 28:3326–3331

    Article  Google Scholar 

  176. Switzer JR, Ethier AL, Hart EC, Flack KM, Rumple AC, Donaldson JC, Bembry AT, Scott OM, Biddinger EJ, Talreja M (2014) Design, synthesis, and evaluation of nonaqueous Silylamines for efficient CO2 capture. Chem Sus Chem 7:299–307

    Article  Google Scholar 

  177. Kortunov P, Baugh LS, Calabro DC, Siskin M (2012) High CO2 to amine adsorption capacity CO2 scrubbing processes. U.S. Patent 20120063979 A1

    Google Scholar 

  178. Sartori G, Thaler WA (1983a) Sterically hindered amino acids and tertiary amino acids as promoters in acid gas scrubbing processes. U.S. Patent 4405579 A

    Google Scholar 

  179. Sartori G, Thaler WA (1983b) N-Secondary butyl glycine promoted acid gas scrubbing process. U.S. Patent 4405586 A

    Google Scholar 

  180. Jansen AE, Feron PHM (1998) Method for gas absorption across a membrane. U.S. Patent 5749941 A

    Google Scholar 

  181. Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liotta CL (2005) Green chemistry – reversible nonpolar-to-polar solvent. Nature 436(7054):1102–1102

    Article  Google Scholar 

  182. Heldebrant DJ, Yonker CR, Jessop PG, Phan L (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1:487–493

    Article  Google Scholar 

  183. Heldebrant DJ, Koech PK, Rainbolt JE, Zheng F, Smurthwaite T, Freeman CJ, Oss M, Leito I (2011) Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture. Chem Eng J 171:794–800

    Article  Google Scholar 

  184. Lo R, Singh A, Kesharwani MK, Ganguly B (2012) Rational design of a new class of polycyclic organic bases bearing two super basic sites and their applications in the CO2 capture and activation process. Chem Commun 48:5865–5867

    Article  Google Scholar 

  185. Shannon MS, Bara JE (2011) Properties of Alkylimidazoles as solvents for CO2 capture and comparisons to imidazolium-based ionic liquids. Ind Eng Chem Res 50:8665–8677

    Article  Google Scholar 

  186. Shannon MS, Tedstone JM, Danielsen SPO, Bara JE (2012) Evaluation of Alkylimidazoles as physical solvents for CO2/CH4 separation. Ind Eng Chem Res 51:515–522

    Article  Google Scholar 

  187. Bara JE, Moon JD, Reclusado KR, Whitley JW (2013) COSMO Therm as a tool for estimating the Thermophysical properties of Alkylimidazoles as solvents for CO2 separations. Ind Eng Chem Res 52:5498–5506

    Article  Google Scholar 

  188. Lin KYA, Park AHA (2011) Effects of bonding types and functional groups on CO2 capture using novel multiphase Systems of Liquid-Like Nanoparticle Organic Hybrid Materials. Environ Sci Technol 45:6633–6639

    Article  Google Scholar 

  189. Park Y, Shin D, Jang YN, Park AHA (2012) CO2 capture capacity and swelling measurements of liquid-like nanoparticle organic hybrid materials via attenuated Total reflectance Fourier transform infrared spectroscopy. J Chem Eng Data 57:40–45

    Article  Google Scholar 

  190. Park Y, Petit C, Han P, Alissa Park AH (2014) Effect of canopy structures and their steric interactions on CO2 sorption behaviour of liquid-like nanoparticle organic hybrid materials. RSC Adv 4:8723–8726

    Article  Google Scholar 

  191. Shafeeyan MS, Wan Daud WM, Houshmand A, Shamiri A (2010) Review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, vol 89:143–151

    Article  Google Scholar 

  192. Khatri RA, Chuang SSC, Soong Y, Gray M (2005) Carbon dioxide capture by diamine-grafted SBA-15: a combined Fourier transform infrared and mass spectrometry study. Ind Eng Chem Res 44:3702–3708

    Article  Google Scholar 

  193. Liu Q, Liu Z (2013) Carbon supported Vanadia for multi- pollutants removal from flue gas. Fuel 108:149–158. https://doi.org/10.1016/j.fuel.2011.05.015

    Article  Google Scholar 

  194. Plaza MG, Rubiera F, Pis JJ, Pevida C (2010) Ammoxidation of carbon materials for CO2 capture. Applied Surface Science, vol 256:6843–6849

    Article  Google Scholar 

  195. Dantas TLP, Amorim SM, Luna FMT, Silva IJ Jr, de Azevedo DCS, Rodrigues AE, Moreira RFPM (2009) Adsorption of carbon dioxide onto activated carbon and nitrogen-enriched activated carbon: surface changes, equilibrium, and Modeling of fixed-bed adsorption. Sep Sci Technol 45(1):73–84

    Article  Google Scholar 

  196. Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari M (2009) Adsorption of carbon dioxide using impregnated activated carbon promoted by zinc. International Journal of Greenhouse Gas Control 3:249–254. https://doi.org/10.1016/j.ijggc.2008.10.003

    Article  Google Scholar 

  197. Guo J, Lua AC (2002) Characterization of adsorbent prepared from oil-palm Shell by CO2 activation for removal of gaseous pollutants. Mater Lett 55:334–339

    Article  Google Scholar 

  198. Nasri NS, Hamza UD, Ismail SN, Ahmed MM, Mohsin R (2014) Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J Clean Prod 71:148–157

    Article  Google Scholar 

  199. Plaza MG, Gacia S, Pevida C, Arias B, Rubieraand F, Pis JJ (2011) Evaluation of ammonia modified and conventionally activated biomass based carbons as CO2 adsorbents in post-combustion conditions. Separation and Purification Technology, vol 80:96–104

    Article  Google Scholar 

  200. Hauchhum L, Mahanta P (2014) Kinetic, thermodynamic and regeneration studies for CO2 adsorption onto activated carbon. International Journal of Advanced Mechanical Engineering 4(1):27–32

    Google Scholar 

  201. Plaza MG, Gonzalez AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for post combustion capture applications. Appl Energy 99:272–279

    Article  Google Scholar 

  202. Hamza UD, Nasri NSB, Majid ZA (2016) CO2 adsorption on sustainable biomass derived activated carbon: a mini-review. International Journal of Advances in Science Engineering and Technology 4(1):104–108

    Google Scholar 

  203. Babu P, Kumar R, Linga P (2013) Pre-combustion capture of carbondioxide in a fixed bed reactor using the clathrate hydrate process. Energy 50:364–373

    Article  Google Scholar 

  204. González AS, Plaza MG, Rubiera F, Pevida C (2013) Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem Eng J 230:456–465

    Article  Google Scholar 

  205. Bae J-S, Su S (2013) Macadamia nutshell-derived carbon composites for post- combustion CO2 capture. Int J Greenh Gas Control 19:174–182

    Article  Google Scholar 

  206. Creamer AE, Gao B, Zhang M (2014) Carbondioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179

    Article  Google Scholar 

  207. Heidari A, Younesi H, Rashidi A, Ghoreyshi AA (2014) Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem EngJ 254:503–513

    Article  Google Scholar 

  208. Sethia G, Patel HA, Pawar RR, Bajaj HC (2014) Porous synthetic hectorites for selective adsorption of carbondioxide over nitrogen, methane, carbon monoxide and oxygen. Appl Clay Sci 91–92:63–69

    Article  Google Scholar 

  209. Wang Q, Luo J, Zhong Z, Borgna A (2011a) CO2 capture by solid adsorbents and their applications: current status and new trends energy environ. Sci 4:42

    Google Scholar 

  210. Saha D, Deng S (2010) Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci 345:402–409

    Article  Google Scholar 

  211. Wang Q, Luo J, Zhong Z, Borgna A (2011b) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55

    Article  Google Scholar 

  212. Chew TL, Ahmad AL, Bhatia S (2010) Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv Colloid Interf Sci 153:43–57

    Article  Google Scholar 

  213. Liu X, Li J, Zhou L, Huang D, Zhou Y (2005) Adsorption of CO2, CH4, and N2 on ordered mesoporous silica molecular sieve. Chem Phys Lett 415:198–201

    Article  Google Scholar 

  214. Sun Y, Liu XW, Su W, Zhou Y, Zhou L (2007) Studies on ordered mesoporous materials for potential environmental and clean energy applications. Appl Surf Sci 253:5650–5655

    Article  Google Scholar 

  215. Sircar S, Golden C, Rao MB (1996) Activated carbon for gas separation and storage. Carbon 34:1

    Article  Google Scholar 

  216. Siriwardane RV, Shen M, Fisher EP, Poston J (2001) Adsorption of CO2 on amolecular sieve and activated carbon. Energy Fuel 15:279

    Article  Google Scholar 

  217. Burchell TD, Judkins RR, Rogers MR, Williams AM (1997) A novel process and material for the separation of carbon dioxide and hydrogen Sulfide gas mixtures. Carbon 35(9):1279

    Article  Google Scholar 

  218. Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2003) CO2adsorption in single walled carbon nanotubes. Chem Phys Lett 376:761

    Article  Google Scholar 

  219. Hsu SC, Lu CS, Su FS, Zeng W, Chen W (2010) Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chem Eng Sci 65:1354

    Article  Google Scholar 

  220. Mishra AK, Ramaprabhu S (2011) Nano magnetite decorated multiwalled carbon nanotubes: a robust nanomaterial for enhanced carbon dioxide adsorption. Energy Environ Sci 4:889

    Article  Google Scholar 

  221. Geim AK, Noveselov KS (2006) The rise of graphene Nat. Mater 6:183

    Google Scholar 

  222. Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H2 and CO2 by graphene J. Phys Chem C 112:15704

    Article  Google Scholar 

  223. Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low-temperature exfoliation of graphite oxide. J Mater Chem 20:8467

    Article  Google Scholar 

  224. Mishra AK, Ramaprabhu S (2011) Carbon dioxide adsorption in graphene sheets. AIP Adv 1:032152. https://doi.org/10.1063/1.3638178

    Article  Google Scholar 

  225. Aschenbrenner O, Mc Guire P, Alsamaq S, Wang J, Supasitmongkol S, Al-Duri B (2011) Adsorption of carbondioxide on hydrotalcite-like compounds of different compositions. Chem Eng Res Des 89:1711–1721

    Article  Google Scholar 

  226. Thiruvenkatachari R, An SSH, Yu XX (2009) Post-combustion CO2 capture by carbon fiber monolithic adsorbents. Prog Energy Combust Sci 35:438–455

    Article  Google Scholar 

  227. Bertos F, Simons SJR, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112:193–205

    Article  Google Scholar 

  228. Gray ML, Soong Y, Champagnea KJ, Baltrus J, Stevens RW, Toochinda P Jr (2004) CO2 capture by amine-enriched fly ash carbon sorbents. Sep Purif Technol 35:31–36

    Article  Google Scholar 

  229. Kaithwas A, Prasad M, Kulshreshtha A, Verma S (2012) Industrial wastes derived solid adsorbents for CO2 capture: amini review. Chem Eng Res Des 90:1632–1641

    Article  Google Scholar 

  230. Wang J, Chen H, Zhou H, Liu X, Qiao W, long D. (2013) Carbondioxide capture using polyethylenimine-loaded mesoporous carbons. J Environ Sci 25(1):124–132

    Article  Google Scholar 

  231. Seredych M, Jagiello J, Bandosz TJ (2014) The complexity of CO2 adsorption on nanoporous sulphur-doped carbons – is surface chemistry an important factor? Carbon 74:207–217

    Article  Google Scholar 

  232. Liu Z, Du Z, Song H, Wang C, Subhan F, Xing W (2014) The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide. J Colloid Interf Sci 416:124–132

    Article  Google Scholar 

  233. Sayari A, Belmabkhout Y, Serna-Guerrero R (2011) Flue gas treatment via CO2 adsorption. Chem Eng J 171:760–774

    Article  Google Scholar 

  234. Guoxin H, Huang H, Li Y (2008) The gasification of wet biomass using ca(OH)2 as CO2 absorbent: the microstructure of char and absorbent. Int. J. Hydrogen Energy 33:5422–5429

    Article  Google Scholar 

  235. Siriwardane R, Poston J, Chaudhari K, Zinn A, Simonyi T, Robinson C (2007) Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carrier supported on bentonite. Energy Fuel 21:1582–1591

    Article  Google Scholar 

  236. Lee SC, Kim JC (2007) Dry potassium-based sorbents for CO2 capture. Catal Surv Jpn 11:171–185

    Article  Google Scholar 

  237. Abanades JC, Anthony EJ, Wang J, Oakey JE (2005) Fluidized bed combustion systems integrating CO2 capture with CaO. Environ Sci Technol 39:2861–2866

    Article  Google Scholar 

  238. Kumar S, Saxena SK (2014) A comparative study of CO2 sorption properties for different oxides. Mater Renew Sustain Energy 3(30):1–15

    Google Scholar 

  239. Pfeiffer H, Vázquez C, Lara VH, Bosch P (2007) Thermal behaviour and CO2 absorption of Li2-xNaxZrO3 solid solutions. Chem Mater 19:922–926

    Article  Google Scholar 

  240. Ida J, Lin YS (2003) Mechanism of high-temperature CO2 sorption on lithium zirconate. Environ Sci Technol 37:1999–2004

    Article  Google Scholar 

  241. Ida J, Xiong R, Lin YS (2004) Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep Purify Technol 36:41–51

    Article  Google Scholar 

  242. López-Ortiz A, Perez-Rivera NG, Reyes-Rojas A, Lardizabal-Gutierrez D (2004) Novel carbon dioxide solid acceptors using sodium containing oxides. Sep Sci Technol 39:3559–3572

    Article  Google Scholar 

  243. Ochoa-Fernández E, Zhao T, Ronning M, Chen D (2009) Effects of steam addition on the properties of high temperature ceramic CO2 acceptors. J Environ Eng 37:397–403

    Article  Google Scholar 

  244. Santillán-Reyes GG, Pfeiffer H (2011) Analysis of the CO2 capture in sodium zirconate (Na2ZrO3): effect of water vapour addition. Int J Greenhouse Gas Control 5:1624–1629

    Article  Google Scholar 

  245. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  246. Vasylkiv O, Sakka Y (2005) Nano explosion synthesis of multi metal oxide ceramic nano powders. Nano Letter 5:2598–2604

    Article  Google Scholar 

  247. Pfeiffer H, Bosch P (2005) Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chem Mater 17:1704–1710

    Article  Google Scholar 

  248. Zhao T, Rønning M, Chen D (2007) Preparation and high-temperature CO2 capture properties of nanocrystalline Na2ZrO3. Chem Mater 19:3294–3301

    Article  Google Scholar 

  249. Jimenez BD, Reyes Rojas CM, López-Ortiz GV (2004) Novel developments in adsorption; the effect of Li as a dopant in Na2ZrO3high-temperature CO2 acceptor. In: AIChE Annual Meeting

    Google Scholar 

  250. Moradi O, Yari M, Zare K, Mirza B, Najafi F (2012) Carbon nanotubes: a review of chemistry principles and reactions. Fullerenes Nanotubes Carbon Nanostruct 20:138

    Article  Google Scholar 

  251. Kemp DR, Paul DR (1974) Gas sorption in polymer membranes containing adsorptive fillers. J Polym Sci B Polym Phys 12:485

    Article  Google Scholar 

  252. Koros WJ, Fleming GK (1993) Membrane based gas separation. J Membr Sci 83:1

    Article  Google Scholar 

  253. Dorosti OMR, Pedram MZ, Moghadam F (2011) Fabrication and characterisation of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation. Chem Eng J 171:1469

    Article  Google Scholar 

  254. Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purify Technol 81:243

    Article  Google Scholar 

  255. Ismail AF, Goh PS, Sanip SM, Aziz M (2009) Transport and separation properties of carbon nanotubes-mixed matrix membranes. Sep Purify Technol 70:12

    Article  Google Scholar 

  256. Reid BD, Ruiz-Trevino A, Musselman IH, Balkus KJ, Ferraris JP (2001) Gas permeability properties of Polysulfone membranes containing the mesoporous molecular sieve MCM-41 Chem. Mater. 13:2366

    Google Scholar 

  257. Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O’Keeffe M, Suh MP, Reedijk J (2012) Coordination polymers, metal-organic frameworks and the need for terminology guidelines. Cryst Eng Comm 14:3001

    Article  Google Scholar 

  258. Biradha K, Ramana A, Vittal JJ (2009) Coordination polymers versus metal−organic frameworks Cryst. Growth Des 9:2969

    Article  Google Scholar 

  259. Li JR, Ma YG, McCarthy MC, Sculley J, Yu JM, Jeong HK, Balbuena PB, Zhou HC (2011b) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Coord. Chem Rev 255:1791

    Google Scholar 

  260. Li JR, Sculley J, Zhou HC (2012) Metal organic frameworks for separations. Chem Rev 112:869

    Article  Google Scholar 

  261. Liu J, Thallapally PK, McGrail BP, Brown DR (2012) Progress in adsorption based CO2 capture by metal organic frameworks. Chem Soc Rev 41:2308

    Article  Google Scholar 

  262. Meek ST, Greathouse JA, Allendorf MD (2011) Metal organic frameworks: a rapidly growing class of versatile nanoporous materials Adv. Mater 23:249

    Google Scholar 

  263. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and design of new materials Nature 423:705

    Google Scholar 

  264. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal organic frameworks. Chem Rev 112:673

    Article  Google Scholar 

  265. Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  Google Scholar 

  266. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of Zeolitic Imidazolate frameworks and application to CO2 capture. Science 319:939–943

    Article  Google Scholar 

  267. Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in Zeolitic Imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211

    Article  Google Scholar 

  268. Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in Isoreticular Zeolitic Imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877

    Article  Google Scholar 

  269. Britt D, Furukawa H, Wang HB, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by metal-organic framework replete with open metal sites. PNAS 106:20637–20640

    Article  Google Scholar 

  270. Su F, Lu C, Chung A-J, Liao C-H (2014) CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption. Appl Energy 113:706–712

    Article  Google Scholar 

  271. Song F, Zhao Y, Zhong Q (2013) Adsorption of carbondioxide on amine-modified TiO2 nanotubes. J Environ Sci 25(3):554–560

    Article  Google Scholar 

  272. Cao Y, Song F, Zhao Y, Zhong Q (2013) Capture of carbondioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc). J Environ Sci 25(10):2081–2087

    Article  Google Scholar 

  273. Lin Y, Yan Q, Kong C, Chen L (2013) Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci Rep 3:1859. https://doi.org/10.1038/Srep01859

    Article  Google Scholar 

  274. Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Polyethylenimine- impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. ACS Appl Mater Interf 5:6937–6945

    Article  Google Scholar 

  275. Bureekaew S, Shimomura S, Kitagawa S (2008) Chemistry and application of flexible porous coordination polymers. Sci Technol Adv Mater 9:014108

    Article  Google Scholar 

  276. Culp JT, Smith MR, Bittner E, Bockrath B (2008) Hysteresis in the physisorption of CO2 and N2 in a flexiblepillardlayered nickel cyanide. J Am Chem Soc 130:12427

    Article  Google Scholar 

  277. Ferey G, Serre C (2009) Large breathing effects in thethree-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380

    Article  Google Scholar 

  278. Hamon L, Llewellyn PL, Devic T, Ghoufi A, Clet G, Guillerm V, Pirngruber GD, Maurin G, Serre C, Driver G, van Beek W, Jolimaitre E, Vimont A, Daturi M, Ferey G (2009) Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr)MOF. J Am Chem Soc 131:17490

    Article  Google Scholar 

  279. Kauffman KL, Culp JT, Allen AJ, Espinal L, Wong-Ng W, Brown TD, Goodman A, Bernardo MP, Pancoast RJ, Chirdon D, Matranga C (2011) Selective adsorption of CO2 from light gas mixtures by using a structurally dynamic porous coordination polymer. Angew Chem Int Ed 50:10888

    Article  Google Scholar 

  280. Serre C, Bourrelly S, Vimont A, Ramsahye NA, Maurin G, Llewellyn PL, Daturi M, Filinchuk Y, Leynaud O, Barnes P, Ferey G (2007) An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption. Adv Mater 19:2246

    Article  Google Scholar 

  281. Zornoza A, Martinez-Joaristi P, Serra-Crespo C, Tellez J, Coronas J, Gascon F, Kapteijn (2011) Functionalized flexible MOF as filler in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem Commun 47:9522

    Article  Google Scholar 

  282. Culp JT, Sui L, Goodman A, Luebke D (2013) Carbon dioxide (CO2) absorption behaviour of mixed matrix polymer composites containing a flexible coordination polymer. J Colloid Interface Sci 393:278–285

    Article  Google Scholar 

  283. Gupta M, Coyle I, Thambimuthu K (2003a) Strawman document for CO2 capture and storage technology roadmap. CANMET Energy Technology Centre, Natural Resources, Canada

    Google Scholar 

  284. Abass A, Olajire A (2010b) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 5:2610–2628

    Google Scholar 

  285. Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125

    Article  Google Scholar 

  286. Clean air task force & consortium for science, policy and outcomes, innovation policy for climate change. In: Proceedings of a national commission on energy policy. Washington, DC; Innovation Policy for Climate Change, A Joint project report of CSPO and CATF to the nation, a project of the Bipartisan Policy Center, Sep. 2009 - http://www.catf.us/resources/publications/files/Innovation_Policy_for_Climate_Change.pdf

  287. Figueroa D, Fout T, Plasynski S, Mcilvried H, Srivastava RD (2008) Advances in CO2 capture technology, the US Department of energy’s carbon sequestration program. Int J Greenh Gas Control 2:9–20

    Article  Google Scholar 

  288. Clean Air Task Force (2010) Coal without carbon: an investment plan for federal action. Clean Air Task Force, Boston

    Google Scholar 

  289. Sreenivasulu B, Gayatri DV, Sredhar I, Raghavan KV (2015) A journey into the process and engineering aspects of carbon capture techniques. Renew Sust Energ Rev 41:1324–1350

    Article  Google Scholar 

  290. Kim YS, Yang SM (2000) Absorption of carbondioxide through hollow fiber membranes using various aqueous absorbents. Sep Purif Technol 21:101–109

    Article  Google Scholar 

  291. Bottino A, Capannelli G, Comite A, Felice RD, Firpo R (2008) CO2 removal from a gas stream by membrane contactor. Sep Purif Technol 59:85–90

    Article  Google Scholar 

  292. Favre E (2011a) Membrane processes and post-combustion carbondioxide capture: challenges and prospects. Chem Eng J 171:782–793

    Article  Google Scholar 

  293. Chabanon E, Roizard D, Favre E (2013) Modeling strategies of membrane contactors for post-combustion CC: a critical comparative study. Chem Eng Sci 87:393–407

    Article  Google Scholar 

  294. Luis P, Gerven TV, de Bruggen BV (2012a) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448

    Article  Google Scholar 

  295. Krishna AR (2009) Describing the diffusion of guest molecules inside porous structures. J Phys Chem C 113(46):19756–19781

    Article  Google Scholar 

  296. Powell CE, Qiao GG (2006b) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    Article  Google Scholar 

  297. Luis P, Gerven TV, de Bruggen BV (2012b) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448

    Article  Google Scholar 

  298. Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z (2014) Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J Membr Sci 460:62–70

    Article  Google Scholar 

  299. Yanan Zhao Y, Jung BT, Ansaloni L, Ho WSW (2014) Multi walled carbon nanotube mixed matrix membranes containing amines for high-pressure CO2/H2 separation. J Membr Sci 459:233–243

    Article  Google Scholar 

  300. Maroño M, Barreiro MM, Torreiro Y, Sánchez JM (2014) Performance of a hybrid system sorbentcatalyst membrane for CO2 capture and H2 production under pre-combustion operating conditions. Catal Today 236:77–85

    Article  Google Scholar 

  301. Favre E (2011b) Membrane processes and post-combustion carbondioxide capture: challenges and prospects. Chem Eng J 171:782–793

    Article  Google Scholar 

  302. Lozano LJ, Godinez C, de los Rios AP, Hernandez-Fernandez FJ, Sanchez Segado S, Alguacil FJ (2011) Recent advances in supported ionic liquid membrane technology. J Membr Sci 376:1–14

    Article  Google Scholar 

  303. Cheng L-H, Rahaman MSA, Yao R, Zhang L, XuX H, Chen H-L (2014) Study on microporous supported ionic liquid membranes for carbondioxide capture. Int J Greenh Gas Control 21:82–90

    Article  Google Scholar 

  304. Mulgundmath VP, Jones RA, Tezel FH, Thibault J (2012) Fixed bed adsorption for the removal of carbondioxide from nitrogen: break through behaviour and modelling for heat and mass transfer. Sep Purif Technol 85:17–27

    Article  Google Scholar 

  305. Lee ZH, Lee KT, Bhatia S, Mohamed AR (2012) Post-combustion carbondioxide capture: evolution towards utilization of nanomaterials. Renew Sust Energ Rev 16:2599–2609

    Article  Google Scholar 

  306. GHG (1993) The capture of carbon di oxide from fossil fuel fired power stations, IEAGHG/SR2. IEA Greenhouse Gas, Cheltenham

    Google Scholar 

  307. Gupta M, Coyle I, Thambimuthu K (2003) Strawman document for CO2 capture and storage technology roadmap. Canada: CANMET Energy Technology Centre, Natural Resources

    Google Scholar 

  308. Axel M, Xiaoshan S (1997) Research and development issues in theCO2 capture. Energy ConversManag 38:37–42

    Google Scholar 

  309. Latimer RE (1967) Distillation of air. Chem Eng Prog 63(2):35–59

    Google Scholar 

  310. Aroonwilas A, Tontiwachwuthikul P (1998) Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol(AMP) using structured packing. Ind Eng Chem Res 37:569–575

    Article  Google Scholar 

  311. Arashi N, Oda N, Yamada M, Ota H, Umeda S, Tajika M (1997) Evaluation of test results of 1000m3N/h pilot plant for CO2 absorption using an amine-based solution. Energy Convers Manag 38:S63–S68

    Article  Google Scholar 

  312. Setameteekul A, Aroonwilas A, Veawab A (2008) Statistical factorial design analysis for parametric interaction and empirical correlations of CO2 absorption performance in MEA and blended MEA/MDEA processes. Sep Purif Technol 64:16–25

    Article  Google Scholar 

  313. Marcia S, de Montigny D, Tontiwachwuthikul P (2009) Liquid distribution of MEA in random and structured packing in a square column. Energy Procedia 1:1155–1161

    Article  Google Scholar 

  314. Kolev N, Nakov S, Ljutzkanov L, Kolev D (2006) Effective area of a highly efficient random packing. Chem Eng Process Intensification 45:429–436

    Article  Google Scholar 

  315. Yu C-H, Tan C-S (2013) Mixed alkanolamines with low regeneration energy for CO2 capture in a rotating packed bed. Energy Procedia 37:455–460

    Article  Google Scholar 

  316. Yu C-H, Cheng H-H, Tan C-S (2012b) CO2 capture by alkanolamines solutions containing ethylenetriamine and piperazine in a rotating packed bed. Int J Greenhouse Gas Control 9:136–147

    Article  Google Scholar 

  317. Abass A, OlajireA (2010) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35:2610–2628

    Article  Google Scholar 

  318. Blomen E, Hendriksa C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Procedia 1:1505–1512

    Article  Google Scholar 

  319. Hossain MM, Lasa HI (2008) Chemical-looping combustion (CLC) for inherent CO2 separations – a review. Chem Eng Sci 63:4433–4445

    Article  Google Scholar 

  320. Richter HJ, Knoche K (1983) Reversibility of combustion processes. Efficiency and Costing - Second Law Analysis of Processes, ACS Symposium series 235:71–85

    Article  Google Scholar 

  321. Ishida M, Jin H (1994) A new advanced power-generation system using chemical-looping combustion. Energy 19(4):415–422

    Article  Google Scholar 

  322. ZafarQ MT, Gevert B (2005) Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Ind Eng Chem Res 44(10):3485–3496

    Article  Google Scholar 

  323. Benson SM, Bennaceur K, Cook P, Davison J, de Coninck H, Farhat K, Ramirez A, Simbeck D, Surles T, Verma P, Wright I (2012) Carbon capture and storage. Chapter 13 in global energy assessment – toward a sustainable future. Cambridge University Press, Cambridge, UK

    Google Scholar 

  324. Grantham institute for climate change briefing paper no 4, Dec (2010), Carbon dioxide storage, Professor Martin Blunt

    Google Scholar 

  325. Spycher N, Pruess K, Ennis-King J (2003) CO2–H2O mixtures in the geological sequestration of CO2. II. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochim Cosmochim Acta 67(16):3015–3031

    Article  Google Scholar 

  326. Gan W, Frohlich C (2013) The gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proc Natl Acad Sci U S A 110(47):18786–18791. https://doi.org/10.1073/pnas.1311316110

    Article  Google Scholar 

  327. Sridhar N, Hill D (2011) Electrochemical conversion of CO2 – opportunities and challenges. Research and Innovation Position Paper 07

    Google Scholar 

  328. https://www.chemistryworld.com/news/sun-shines-for-iron-catalyst-to-convert-carbon-dioxide-to-methane/3007722.article

  329. Ushikoshi K (1997) Kobe steel engineering reports, vol 47, no 3 (in Japanese)

    Google Scholar 

  330. Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal A Gen 38:311–318. https://doi.org/10.1016/0926-860X(95)00305-3

    Article  Google Scholar 

  331. Imai T, Yasutake S, Kuroda K, Hirano M, Akano T (1998) Mitsubishi Jyuko Gihiou. Technical Report of Mitsubishi Heavy Industries, Ltd, vol 35, no 6 (in Japanese)

    Google Scholar 

  332. Nakatsuji H, Hu ZM (2000) Mechanism of methanol synthesis on cu(100) and Zn/cu(100) surfaces: comparative dipped Adcluster model study. Int J Quantum Chem 77:341–349. https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<341::AID-QUA33>3.0.CO;2-T

    Article  Google Scholar 

  333. Takagawa M, Ohsugi M (1987) Study on reaction rates for methanol synthesis from carbon monoxide, carbon dioxide, and hydrogen. Journal of Catalyst 107(1):161–172. https://doi.org/10.1016/0021-9517(87)90281-8

    Article  Google Scholar 

  334. Vijayan B, Dimitrijevic NM, Rajh T, Gray K (2010) Effect of calcination temperature on the photocatalytic reduction and oxidation process of hydrothermally synthesized titania nanotubes. J Phys Chem C 114:12994–13002

    Article  Google Scholar 

  335. Bhattacharyya K, Danon A, Vijayan BK, Gray KA, Stair PC, Weitz E (2013) Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FTIR study. J Phys Chem C 117:12661–12678

    Article  Google Scholar 

  336. Bhattacharyya K, Wu W, Weitz E, Vijayan BK, Gray KA (2015) Probing water and CO2 interactions at the surface of collapsed Titania nanotubes using IR spectroscopy. Molecules 20:15469–15487. https://doi.org/10.3390/molecules200915469

    Article  Google Scholar 

  337. Bicarbonate based microalgae carbon sequestration for higher biomass and lipid production in chlorella species: Project Reference No: 38S_B_MSC_015. Indian Academy Degree College; http://www.kscst.iisc.ernet.in/spp/38_series/spp38s/synopsis_biofuel/MSC/247_38S_B_MSc_015.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chavali Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kuppan, D., Chavali Yadav (2018). CO2 Sequestration: Processes and Methodologies. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Sequestration: Processes and Methodologies
    Published:
    28 November 2018

    DOI: https://doi.org/10.1007/978-3-319-48281-1_6-2

  2. Original

    Sequestration: Processes and Methodologies
    Published:
    20 November 2017

    DOI: https://doi.org/10.1007/978-3-319-48281-1_6-1