Skip to main content

Bioactive Cosmetics

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Cosmetics are products intended for application on the skin and hair, with the aim of cleansing, beautifying, promoting attractiveness, or improving the appearance. Among the active ingredients usually used in this type of preparation, there is a worldwide trend of incorporating vegetable source products due to their commercial appeal, safety, and rich composition, which is frequently associated with a synergistic or multifunctional effect. Botanical extracts are rich in secondary metabolites that occur in plants in a high structural diversity. Phenolic compounds, substances structurally characterized by having one or more hydroxyls attached to an aromatic ring, are classified into simple phenolics and polyphenols, which may be subdivided into tannins and flavonoids. Both flavonoids and non-flavonoids are associated with various interesting cosmetic properties like photoprotection, antiaging, moisturizing, antioxidant, astringent, anti-irritant, and antimicrobial activity. In this chapter, the most promising phenolic compounds for use in cosmetic formulations will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Barel A, Paye M, Maibach H (2014) Handbook of cosmetic science and technology, 4th edn. CRC Press Taylor& Francis Group, Boca Raton

    Google Scholar 

  2. Kirk-Othmer (2012) Chemical technology of cosmetics. Wiley: New Jersey

    Google Scholar 

  3. Lattanzio V, Kroon P, Quideau S, Treutter D (2009) Plant phenolics: secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley, Singapore, pp 1–35

    Google Scholar 

  4. Li B, Robinson DH, Birt DF (1997) Evaluation of properties of apigenin and [G-3H]apigenin and analytic method development. J Pharm Sci 86:721–725

    Article  Google Scholar 

  5. Dweek A (2007) Natural ingredients used in cosmeceuticals. In: Walters K, Roberts M (eds) Dermatologic, cosmeceutic, and cosmetic development: therapeutic and novel approaches. CRC Press, New York, p 648

    Google Scholar 

  6. Mabry T, Markham K, Thomas M (1970) The systematic identification of flavonoids. Springer, New York

    Book  Google Scholar 

  7. Pelillo M, Cuvelier M, Biguzzi B et al (2004) Calculation of the molar absorptivity of polyphenols by using liquid chromatography with diode array detection: the case of carnosic acid. J Chromatogr A 1023:225–229

    Article  Google Scholar 

  8. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Google Scholar 

  9. Telange DR, Patil AT, Tatode A, Bhoyar B (2014) Development and validation of UV spectrophotometric method for the estimation of kaempferol in kaempferol: hydrogenated soy phosphatidylcholine (HSPC) complex. Pharm Methods 5:34–38

    Article  Google Scholar 

  10. Chen X, Ahn D (1998) Antioxidant activities of six natural phenolics against lipid oxidation induced by Fe2+ or ultraviolet light. J Am Oil Chem Soc 75:1717

    Article  Google Scholar 

  11. Nasr Bouzaiene N, Chaabane F, Sassi A et al (2016) Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 144:80–85

    Article  Google Scholar 

  12. Kim B, Lee J-Y, Lee H-Y et al (2013) Hesperidin suppresses melanosome transport by blocking the interaction of Rab27A-melanophilin. Biomol Ther 21:343–348

    Article  Google Scholar 

  13. Murphy PA, Barua K, Hauck CC (2002) Solvent extraction selection in the determination of isoflavones in soy foods. J Chromatogr B 777:129–138

    Article  Google Scholar 

  14. Giusti MM, Rodríguez-Saona LE, Wrolstad RE (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agric Food Chem 47:4631–4637

    Article  Google Scholar 

  15. Khan N, Llorach R, Urpi-Sarda M et al (2010) Resveratrol and bioactive flavonoids in immune function. In: Watson R, Zibadi S, Preedy V (eds) Dietary components and immune function. Springer Science & Business Media, New York, pp 397–420

    Chapter  Google Scholar 

  16. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    Article  Google Scholar 

  17. Magnani C, Isaac VLB, Correa MA, Salgado HRN (2014) Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods 6:3203–3210. https://doi.org/10.1039/C3AY41807C

    Article  Google Scholar 

  18. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002

    Article  Google Scholar 

  19. Pei K, Ou J, Huang J, Ou S (2016) p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric 96:2952–2962. https://doi.org/10.1002/jsfa.7578

    Article  Google Scholar 

  20. Li H-R, Habasi M, Xie L-Z, Aisa H (2014) Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules 19:12940–12948. https://doi.org/10.3390/molecules190912940

    Article  Google Scholar 

  21. Nićiforović N, Abramovič H (2014) Sinapic acid and its derivatives: natural sources and bioactivity. Compr Rev Food Sci Food Saf 13:34–51. https://doi.org/10.1111/1541-4337.12041

    Article  Google Scholar 

  22. Singh S (2010) Handbook on cosmetics (processes, formulae with testing methods). Asia Business Press, Delhi

    Google Scholar 

  23. Donovan J, Manach C, Faulks R, Kroon P (2008) Absorption and metabolism of dietary plant secondary metabolites. In: Crozier A, Clifford M, Ashihara H (eds) Plant secondary metabolites occurrence, structure and role in the human diet. Wiley, Singapore, pp 303–352

    Google Scholar 

  24. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160

    Article  Google Scholar 

  25. El Gharras H (2009) Polyphenols: food sources, properties and applications – a review. Int J Food Sci Technol 44:2512–2518. https://doi.org/10.1111/j.1365-2621.2009.02077.x

    Article  Google Scholar 

  26. Baxter RA (2008) Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J Cosmet Dermatol 7:2–7. https://doi.org/10.1111/j.1473-2165.2008.00354.x

    Article  Google Scholar 

  27. Rhie G, Shin MH, Seo JY et al (2001) Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol 117:1212–1217

    Article  Google Scholar 

  28. Shindo Y, Witt E, Han D et al (1994) Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol 102:122–124

    Article  Google Scholar 

  29. Fusco D, Colloca G, Monaco M, Cesari M (2007) Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2:377–387

    Google Scholar 

  30. Godic A, Poljšak B, Adamic M, Dahmane R (2014) The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev 2014:1–6

    Article  Google Scholar 

  31. Kuntic V, Pejic N, Micic S et al (2003) Determination of dissociation constants of quercetin. Pharmazie 58:439–440

    Google Scholar 

  32. Birt F, Hendrich S, Wang W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157–177

    Article  Google Scholar 

  33. Cornard J, Merlin J (2002) Spectroscopic and structural study of complexes of quercetin with Al(III). J Inorg Biochem 92:19–27

    Article  Google Scholar 

  34. Behling E, Sendão M, Francescato H et al (2004) Flavonoide quercetina: aspectos gerais e ações biológicas. Aliment e Nutr Araraquara 15:285–292

    Google Scholar 

  35. Hu F, Bu Y, Liang R et al (2013) Quercetin and daidzein β-apo-14′-carotenoic acid esters as membrane antioxidants. Free Radic Res 47:413–421

    Article  Google Scholar 

  36. Sisa M, Bonnet SL, Ferreira D, Van der Westhuizen JH (2010) Photochemistry of flavonoids. Molecules 15:5196–5245

    Article  Google Scholar 

  37. Pietta P (2000) Flavonoids as antioxidants. J Nat Prod 63:035–1042

    Article  Google Scholar 

  38. Lemanska K, Szymusiak H, Tyrakowska B et al (2001) The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 31:869–881

    Article  Google Scholar 

  39. Narayanan DL, Saladi RN, Fox JL (2010) Review: ultraviolet radiation and skin cancer. Int J Dermatol 49:978–986

    Article  Google Scholar 

  40. Bachelor M, Bowden G (2004) UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol 14:131–138

    Article  Google Scholar 

  41. Schuch AP, Garcia CCM, Makita K, Menck CFM (2013) DNA damage as a biological sensor for environmental sunlight. Photochem Photobiol Sci 12:1259–1272

    Article  Google Scholar 

  42. Agati G, Brunetti C, Di Ferdinando M et al (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45

    Article  Google Scholar 

  43. Anouar EH, Gierschner J, Duroux J-L, Trouillas P (2012) UV/visible spectra of natural polyphenols: a time-dependent density functional theory study. Food Chem 131:79–89

    Article  Google Scholar 

  44. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  Google Scholar 

  45. Swinny E, Markham K (2003) Application of flavonoid analysis and identification techniques: isoflavones (phytoestrogens) and 3-deoxyanthocyanins. In: Rice-Evans C, Packer L (eds) Flavonoids in health and disease, 2nd edn. CRC Press, New York, p 504

    Google Scholar 

  46. Ziyatdinova GK, Budnikov HC (2015) Natural phenolic antioxidants in bioanalytical chemistry: state of the art and prospects of development. Russ Chem Rev 84:194–224

    Article  Google Scholar 

  47. Harripersad S, Rhein L (2006) Sunscreens. In: Rhein L, Schlossman M, O’Lenick A, Somasundaran P (eds) Surfactants in personal care products and decorative cosmetics, 3rd edn. CRC Press, Boca Raton, pp 277–322

    Google Scholar 

  48. Janjua NR, Kongshoj B, Andersson AM, Wulf HC (2008) Sunscreens in human plasma and urine after repeated whole-body topical application. J Eur Acad Dermatol Venereol 22:456–461. https://doi.org/10.1111/j.1468-3083.2007.02492.x

    Article  Google Scholar 

  49. Klimová Z, Hojerová J, Beránková M (2015) Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens – in vitro study mimicking real-life consumer habits. Food Chem Toxicol 83:237–250. https://doi.org/10.1016/j.fct.2015.06.025

    Article  Google Scholar 

  50. De Oliveira CA, Peres DDA, Graziola F et al (2016) Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur J Pharm Sci 81:1–9

    Article  Google Scholar 

  51. Zhu X, Zeng X, Zhang X et al (2016) The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine 12:623–632

    Article  Google Scholar 

  52. Dario MF, Santos MSCS, Viana AS et al (2016) A high loaded cationic nanoemulsion for quercetin delivery obtained by sub-PIT method. Colloids Surf A Physicochem Eng Asp 489:256–264

    Article  Google Scholar 

  53. Beck R, Guterres S, Pohlmann A (2011) Nanocosmetics and nanomedicines. New approaches for skin care. Springer Berlin Heidelberg: Berlin

    Google Scholar 

  54. Kemppainen BW, Reifenrath W (1990) Methods for skin absorption. CRC Press: Florida

    Google Scholar 

  55. Brain KR, Chilcott R (2008) Principles and practice skin toxicology. Wiley: New Jersey

    Google Scholar 

  56. Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry. Wiley: New Jersey

    Google Scholar 

  57. Bartosova L, Bajgar J (2012) Transdermal drug delivery in vitro using diffusion cells. Curr Med Chem 19:4671–4677. https://doi.org/10.2174/092986712803306358

    Article  Google Scholar 

  58. Lazaridis M, Colbeck I (2010) Human exposure to pollutants via dermal absorption and inhalation. Springer Netherlands: Dordrecht. https://doi.org/10.1007/978-90-481-8663-1

  59. Rothwell JA, Day AJ, Morgan M (2005) Experimental determination of octanol − water partition coefficients of quercetin and related flavonoids. J Agric Food Chem 53:4355

    Article  Google Scholar 

  60. Dario MF, Oliveira CA, Cordeiro LRG et al (2016) Stability and safety of quercetin-loaded cationic nanoemulsion: in vitro and in vivo assessments. Colloids Surf A Physicochem Eng Asp 506:591–599. https://doi.org/10.1016/j.colsurfa.2016.07.010

    Article  Google Scholar 

  61. Natarajan VT, Ganju P, Ramkumar A et al (2014) Multifaceted pathways protect human skin from UV radiation. Nat Chem Biol 10:542–551. https://doi.org/10.1038/nchembio.1548

    Article  Google Scholar 

  62. Ganceviciene R, Liakou AI, Theodoridis A et al (2012) Skin anti-aging strategies. Dermatoendocrinol 4:308–319. https://doi.org/10.4161/derm.22804

    Article  Google Scholar 

  63. Farage MA, Miller KW, Elsner P, Maibach HI (2008) Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci 30:87–95. https://doi.org/10.1111/j.1468-2494.2007.00415.x

    Article  Google Scholar 

  64. Thring TS, Hili P, Naughton DP (2009) Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med 9:27. https://doi.org/10.1186/1472-6882-9-27

    Article  Google Scholar 

  65. Chuarienthong P, Lourith N, Leelapornpisid P (2010) Clinical efficacy comparison of anti-wrinkle cosmetics containing herbal flavonoids. Int J Cosmet Sci 32:99–106. https://doi.org/10.1111/j.1468-2494.2010.00522.x

    Article  Google Scholar 

  66. Zillich O, Schweiggert-Weisz U, Eisner P, Kerscher M (2015) Polyphenols as active ingredients for cosmetic products. Int J Cosmet Sci. https://doi.org/10.1111/ics.12218

  67. Sambandan DR, Ratner D (2011) Sunscreens: an overview and update. J Am Acad Dermatol 64:748–758. https://doi.org/10.1016/j.jaad.2010.01.005

    Article  Google Scholar 

  68. Cestari TF, De Oliveira FB, Boza JC (2012) Considerations on photoprotection and skin disorders. Ann Dermatol Venereol 139(Suppl):S135–S143. https://doi.org/10.1016/S0151-9638(12)70125-4

    Article  Google Scholar 

  69. Morabito K, Shapley NC, Steeley KG, Tripathi A (2011) Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci 33:385–390. https://doi.org/10.1111/j.1468-2494.2011.00654.x

    Article  Google Scholar 

  70. Das MK, Kalita B (2014) Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application. J Appl Pharm Sci 4:51–57. https://doi.org/10.7324/JAPS.2014.40110

    Google Scholar 

  71. Dhiman A, Singh D (2014) Development, characterization & in vitro skin permeation of rutin ethosomes as a novel vesicular carrier. Int J Biomed Res 5:158–160. https://doi.org/10.7439/ijbr

    Article  Google Scholar 

  72. Park SN, Lee HJ, Gu HA (2014) Enhanced skin delivery and characterization of rutin-loaded ethosomes. Korean J Chem Eng 31:485–489. https://doi.org/10.1007/s11814-013-0232-3

    Article  Google Scholar 

  73. Almeida JS, Lima F, Da Ros S et al (2010) Nanostructured systems containing rutin: in vitro antioxidant activity and photostability studies. Nanoscale Res Lett 5:1603–1610. https://doi.org/10.1007/s11671-010-9683-1

    Article  Google Scholar 

  74. Wu T-H, Yen F-L, Lin L-T et al (2008) Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm 346:160–168. https://doi.org/10.1016/j.ijpharm.2007.06.036

    Article  Google Scholar 

  75. WHO (2016) Ultraviolet radiationradiation. WHO. http://www.who.int/uv/en/. Acessed in: 15 August 2017

  76. Rigel DS (2008) Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2007.04.034

  77. Hussein M (2005) Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 32:191–205

    Article  Google Scholar 

  78. Dupont E, Gomez J, Bilodeau D (2013) Beyond UV radiation: a skin under challenge. Int J Cosmet Sci 35:224–232

    Article  Google Scholar 

  79. De Gruijl F (2002) p53 mutations as a marker of skin cancer risk: comparison of UVA and UVB effects. Exp Dermatol 11:37–39

    Article  Google Scholar 

  80. Ryu J, Park S, Kim I et al (2014) Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int J Mol Med 34:796–803

    Article  Google Scholar 

  81. Arakane K, Naru E (2015) UV care. In: Sivamani R, Jagdeo J, Elsner P, Maibach H (eds) Cosmeceuticals and active cosmetics, 3rd edn. CRC Press, New York, p 458

    Google Scholar 

  82. Halliday G (2005) Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 571:107–120

    Article  Google Scholar 

  83. de Laat A, Van der Leun J, de Gruijl F (1997) Carcinogenesis induced by UVA (365-nm) radiation: the dose–time dependence of tumor formation in hairless mice. Carcinogenesis 18:1013–1020

    Article  Google Scholar 

  84. Gilbert E, Pirot F, Bertholle V et al (2012) Commonly used UV filter toxicity on biological functions: review of last decade studies. Int J Cosmet Sci 1–12. https://doi.org/10.1111/ics.12030

  85. Maier H, Schauberger G, Brunnhofer K, Hönigsmann H (2001) Change of ultraviolet absorbance of sunscreens by exposure to solar-simulated radiation. J Invest Dermatol 117:256–262. https://doi.org/10.1046/j.0022-202x.2001.01425.x

    Article  Google Scholar 

  86. Qi C, Chen Y, Jing QZ, Wang XG (2011) Preparation and characterization of catalase-loaded solid lipid nanoparticles protecting enzyme against proteolysis. Int J Mol Sci 12:4282–4293. https://doi.org/10.3390/ijms12074282

    Article  Google Scholar 

  87. Burnett ME, Wang SQ (2011) Current sunscreen controversies: a critical review. Photodermatol Photoimmunol Photomed 27:58–67. https://doi.org/10.1111/j.1600-0781.2011.00557.x

    Article  Google Scholar 

  88. Kerr A, Ferguson J (2004) Photoallergic contact dermatitis. Photodermatol Photoimmunol Photomed 20:121–125. https://doi.org/10.1111/j.1600-0781.2004.00092.x

    Article  Google Scholar 

  89. Victor FC, Cohen DE, Soter NA (2010) A 20-year analysis of previous and emerging allergens that elicit photoallergic contact dermatitis. J Am Acad Dermatol 62:605–610. https://doi.org/10.1016/j.jaad.2009.06.084

    Article  Google Scholar 

  90. Scalia S, Mezzena M (2010) Photostabilization effect of quercetin on the UV filter combination, butyl methoxydibenzoylmethane-octyl methoxycinnamate. Photochem Photobiol 86:273–278. https://doi.org/10.1111/j.1751-1097.2009.00655.x

    Article  Google Scholar 

  91. Pereira M, Pereira N, Rosado C et al (2015) Photostabilization of sunscreens by incorporation of tea as the external phase (Fotoestabilização de protectores solares por incorporação de chás como fase externa). Biomed Biopharm Res 12:107–116

    Google Scholar 

  92. Valéria M, Velasco R, Daud F et al (2008) Broad spectrum bioactive sunscreens. Int J Pharm 363:50–57. https://doi.org/10.1016/j.ijpharm.2008.06.031

  93. Peres DA, de Oliveira CA, da Costa MS et al (2016) Rutin increases critical wavelength of systems containing a single UV filter and with good skin compatibility. Skin Res Technol 22:325–333

    Article  Google Scholar 

  94. De Oliveira CA, Peres DDA, Rugno CM et al (2015) Functional photostability and cutaneous compatibility of bioactive UVA sun care products. J Photochem Photobiol B 148:154–159. https://doi.org/10.1016/j.jphotobiol.2015.04.007

    Article  Google Scholar 

  95. McClements DJ (2007) Critical review of techniques and methodologies for characterization of emulsion stability. Crit Rev Food Sci Nutr 47:611–649. https://doi.org/10.1080/10408390701289292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelli Ferrera Dario .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Oliveira, C.A., Dario, M.F. (2018). Bioactive Cosmetics. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_157-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_157-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics