Skip to main content

Nanomaterials for the Selective Detection of Hydrogen at Trace Levels in the Ambient

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Energy demand has been systematically increasing and the trends indicate that this pattern will not change in the next decade. The use of fossil fuels is responsible for the emission of gases related to global warming together with air pollutants such as toxic species and particulate matter. The realization of a green economy requires the safe use of clean and virtually inexhaustible energy sources. In that sense, hydrogen obtained via solar water splitting has potential for becoming an alternative fuel. The safe production, transport and use of hydrogen as a fuel source requires the improvement of currently existing hydrogen sensors. This chapter critically reviews the current technologies and the main research trends in hydrogen sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. World Health Organization, Mortality and burden of disease from ambient air pollution. http://www.who.int/gho/phe/outdoor_air_pollution/burden/en/. Accessed 22 Aug 2017

  2. Winter CJ (2006) Energy policy is technology politics: the hydrogen energy case (with an eye particularly on safety comparison of hydrogen energy to current fuels). Int J Hydrogen Energy 31:1623–1631

    Article  Google Scholar 

  3. Frolov SM, Medvedev SN, Basevich VY, Frolov FS (2013) Self-ignition of hydrocarbon-hydrogen-air mixtures. Int J Hydrogen Energy 38:4177–4184

    Article  Google Scholar 

  4. Gupta RB (2008) Hydrogen fuel-production, transport, and storage, 1st edn. Taylor and Francis Group, New York/Boca Raton

    Book  Google Scholar 

  5. Mirza NR, Degenkolbe S, Witt W (2011) Analysis of hydrogen incidents to support risk assessment. Int J Hydrogen Energy 36:2068–2077

    Article  Google Scholar 

  6. Najjar YSH (2013) Hydrogen safety: the road toward green technology. Int J Hydrogen Energy 38:10716–10728

    Article  Google Scholar 

  7. US Department of Energy, R&D targets for hydrogen safety sensors. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/safety.pdf. Accessed 22 Aug 2017

  8. Buttner WJ, Post MB, Burgess R, Rivkin C (2011) An overview of hydrogen safety sensors and requirements. Int J Hydrogen Energy 36:2462–2470

    Article  Google Scholar 

  9. Korotcenkov G, Do Han S, Stetter JR (2009) Review of electrochemical hydrogen sensors. Chem Rev 109:1402–1433

    Article  Google Scholar 

  10. Liu Y-C, Hwang B-J, Chen Y-L (2002) Nafion based hydrogen sensors: Pt/Nafion electrodes prepared by Takenata-Torikai method and modified with Polypyrrole. Electroanalysis 14:556

    Article  Google Scholar 

  11. Lee E, Hwang I, Cha J, Lee H, Lee W, Pak J, Lee J, Ju B (2011) Micromachined catalytic combustible hydrogen gas sensors. Sensors Actuators B 153:392–397

    Article  Google Scholar 

  12. Qiu F, Shin W, Matsumiya M, Izu N, Matsubara I, Murayama N (2004) Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film. Sensors Actuators B 103(1–2):252–259

    Article  Google Scholar 

  13. Nishibori M et al (2010) Thermoelectric hydrogen sensors using Si and SiGe thin films with a catalytic combustor. Jpn J Ceram Soc 118:188–192

    Article  Google Scholar 

  14. Simon I, Arndt M (2002) Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sensors Actuators B 97–98:104–108

    Article  Google Scholar 

  15. Aroutiounian V (2007) Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int J Hydrogen Energy 32:1145–1158

    Article  Google Scholar 

  16. Hübert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors – A review. Sensors Actuators B 157:329–352

    Article  Google Scholar 

  17. Liu B, Cai D, Liu Y, Wang D, Wang L, Wang Y, Li H, Li Q, Wang T (2014) Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sensors Actuators B 193:28−34

    Google Scholar 

  18. Kukkola J, Mohl M, Leino A-R, Mäklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K (2013) Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sensors Actuators B 186:90−95

    Article  Google Scholar 

  19. Wang Z, Li Z, Jiang T, Xu X, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Interfaces 5:2013–2021

    Article  Google Scholar 

  20. Suematsu K, Shin Y, Hua Z, Yoshida K, Yuasa M, Kida T, Shimanoe K (2014) Nanoparticle cluster gas sensor: controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl Mater Interfaces 6:5319−5326

    Article  Google Scholar 

  21. Chang C-M, Hon M-H, Leu I-C (2013) Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO Nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl Mater Interfaces 5:135−143

    Google Scholar 

  22. Chávez F, Pérez-Sánchez G, Goiz O, Zaca-Morán P, Peña-Sierra R, Morales-Acevedo A, Felipe C, Soledad-Priego M (2013) Sensing performance of palladium-functionalized WO3 nanowires by a drop-casting method. Appl Surf Sci 275:28−35

    Article  Google Scholar 

  23. Gu H, Wang Z, Hu Y (2012) Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 12:5517–5550

    Article  Google Scholar 

  24. Zhao M, Huang b J, Ong C-W (2013) Feasibility of H2 sensors composed of tungsten oxide nanocluster films. Int J Hydrogen Energy 38:15559–15566

    Article  Google Scholar 

  25. Annanouch FE, Haddi Z, Ling M, Di Maggio F, Vallejos S, Vilic T, Zhu Y, Shujah T, Umek P, Bittencourt C, Blackman C, Llobet E (2016) Aerosol-assisted CVD-grown PdO nanoparticle decorated tungsten oxide Nanoneedles extremely sensitive and selective to hydrogen. ACS Appl Mater Interfaces 8:10413–10421

    Article  Google Scholar 

  26. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide Semiconductor Gas Sensors. Catal Surv Jpn 7:63–75

    Article  Google Scholar 

  27. Chiang Y-J, Lee K-C, Pan F-M (2015) Effects of Pt decoration on the CO sensing reaction mechanism of PdO Nanoflakes thin films. J Phys Chem C 119:17278–17287

    Article  Google Scholar 

  28. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B 5:7−19

    Article  Google Scholar 

  29. Sun Y, Wang HH (2007) High performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles. Adv Mater 19:2818−2823

    Google Scholar 

  30. Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K (2015) Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces 7:5863−5869

    Google Scholar 

  31. Koziej D, Hübner M, Barsan N, Weimar U, Sikora M, Grunwaldt J-D (2009) Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors. Phys Chem Chem Phys 11:8620–8625

    Article  Google Scholar 

  32. Joshi RK, Krishnan S, Yoshimura M, Kumar A (2009) Pd nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res Lett 4:1191–1196. F

    Article  Google Scholar 

  33. Kumar MK, Ramachandra Rao MS, Ramaprabhu S (2006) Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films. J Phys D Appl Phys 39:2791–2795

    Article  Google Scholar 

  34. Ravi Prakash J, McDaniel AH, Horn M, Pilione L, Sunal P, Messier R, McGrath RT, Schweighardt FK (2007) Hydrogen sensors: role of palladium thin film morphology. Sensors Actuators B 120:439–446

    Article  Google Scholar 

  35. Noh J-S, Lee JM, Lee W (2011) Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sensors 11:825–851

    Article  Google Scholar 

  36. Hughes RC, Schubert WK (1992) Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J Appl Phys 71:542–544

    Article  Google Scholar 

  37. Yoshimura K et al (2009) New hydrogen sensor based on sputtered mg-Ni alloy thin film. Vacuum 83:699–702

    Article  Google Scholar 

  38. Favier ECW, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227–2231

    Article  Google Scholar 

  39. Xu T, Zach MP, Xiao ZL, Rosenmann D, Welp U, Kwok WK, Crabtree GW (2005) Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl Phys Lett 86:203104

    Article  Google Scholar 

  40. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  Google Scholar 

  41. Valentini L, Cantalini C, Lozzi L, Armentano I, Kenny JM, Santucci S (2003) Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications. Mater Sci Eng C 23:523–529

    Article  Google Scholar 

  42. Ionescu R, Espinosa EH, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J-C, Pireaux JJ (2006) Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sensors Actuators B 113:36–46

    Article  Google Scholar 

  43. Charlier J-C, Arnaud L, Avilov IV, Delgado M, Demoisson F, Espinosa EH, Ewels CP, Felten A, Guillot J, Ionescu R, Leghrib R, Llobet E, Mansour A, Migeon H-N, Pireaux J-J, Reniers F, Suarez-Martinez I, Watson GE, Zanolli Z (2009) Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes. Nanotechnology 20:375501

    Article  Google Scholar 

  44. Espinosa EH, Ionescu R, Bittencourt C, Felten A, Erni R, Van Tendeloo G, Pireaux J-J, Llobet E (2007) Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing. Thin Solid Films 515:8322–8327

    Article  Google Scholar 

  45. Leghrib R, Felten A, Demoisson F, Reniers F, Pireaux J-J, Llobet E (2010) Room-temperature, selective detection of benzene at trace levels using plasma-treated metal-decorated multiwalled carbon nanotubes. Carbon 48:3477–3484

    Article  Google Scholar 

  46. Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386

    Article  Google Scholar 

  47. Sayago I, Terrado E, Lafuente E, Horrillo MC, Maser WK, Benito AM, Navarro R, Urriolabeitia EP, Martinez MT, Gutierrez J (2005) Hydrogen sensors based on carbon nanotubes thin films. Synth Met 148:15

    Article  Google Scholar 

  48. Kumar MK, Ramaprabhu S (2006) Nanostructured Pt Functionlized multiwalled carbon nanotube based hydrogen sensor. J Phys Chem B 110:11291–11298

    Article  Google Scholar 

  49. Jung D, Han M, Lee GS (2015) Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable carbon nanotubes. ACS Appl Mater Interfaces 7:3050−3057

    Google Scholar 

  50. Dhall S, Sood K, Nathawat R (2017) Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles. Int J Hydrogen Energy 42:8392–8398

    Article  Google Scholar 

  51. Jung D, Han M, Lee GS (2014) Room-temperature gas sensor using carbon nanotube with cobalt oxides. Sensors Actuators B 204:596–601

    Article  Google Scholar 

  52. Sharma B, Yadav H, Kim J-S (2017) MEMS based hydrogen sensor with the highly porous au-CNT film as a sensing material. J Mater Sci Mater Electron 28:13540–13547

    Article  Google Scholar 

  53. Seo SM, Kang TJ, Cheon JH, Kim YH, Park YJ (2014) Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold-nanoparticle decorated SWCNT network. Sensors Actuators B 204:716–722

    Article  Google Scholar 

  54. Kumar R, Varandani D, Mehta BR, Singh VN, Wen Z, Feng X, Müllen K (2011) Fast response and recovery of hydrogen sensing in Pd-Pt nanoparticle-graphene composite layer. Nanotechnology 22(27):275719

    Article  Google Scholar 

  55. Johnson JL, Behnam A, Pearton SJ, Ural A (2010) Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks. Adv Mater 22(43):4877–4880

    Article  Google Scholar 

  56. Shafiei M, Spizzirri PG, Arsat R, Yu J, Plessis JD, Dubin S, Kaner RB, Kalantar-Zadeh K, Wlodarski W (2010) Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J Phys Chem C 114(32):13796–13801

    Article  Google Scholar 

  57. Lee JS, Oh J, Jun J, Jang J (2015) Wireless hydrogen smart sensor based on Pt/graphene immobilized radio-frequency identification tag. ACS Nano 9(8):7783–7790

    Article  Google Scholar 

  58. Phan D-T, Chung G-S (2015) A novel nanoporous Pd-graphene hybrid synthesized by a facile and rapid process for hydrogen detection. Sensors Actuators B 210:661–668

    Article  Google Scholar 

  59. Ha NH, Long CT, Nam NH, Hue NT, Phuong NH, Hong HS (2017) Characteristics of hydrogen sensor based on monolayer of Pt nanoparticles decorated on single-layer graphene. J Electron Mater 46(6):3353–3358

    Article  Google Scholar 

  60. Alfano B, Massera E, Polichetti T, Miglietta ML, Di Francia G (2017) Effect of palladium nanoparticle functionalization on the hydrogen gas sensing of graphene based chemi-resistive devices. Sensors Actuators B 253:1163–1169

    Article  Google Scholar 

  61. Pandey PA, Wilson NR, Covington JA (2013) Pd-doped reduced graphene oxide sensing films for H2 detection. Sensors Actuators B 183:478–487

    Article  Google Scholar 

  62. Ghosh R, Santra S, Ray SK, Guha PK (2015) Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl Phys Lett 107(15):153102

    Article  Google Scholar 

  63. Mansha M, Qurashi A, Ulla N, Bakare FO, Kha I, Yamani ZH (2016) Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram Int 42:11490–11495

    Article  Google Scholar 

  64. Dutta D, Hazra SK, Das J, Sarkar CK, Basu S (2015) Studies on p-TiO2/n-graphene heterojunction for hydrogen detection. Sensors Actuators B 212:84–92

    Article  Google Scholar 

  65. Esfandiar A, Irajizad A, Akhavan O, Ghasemi S, Gholami MR (2014) Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. Int J Hydrogen Energy 39(15):8169–8179

    Article  Google Scholar 

  66. Hong J, Lee S, Seo J, Pyo S, Kim J, Lee T (2015) A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl Mater Interfaces 7:3554−3561

    Google Scholar 

  67. Yaqoo U, Iftekhar-Uddin ASM, Chung G-S (2016) Foldable hydrogen sensor using Pd nanocubes dispersed into multiwall carbon nanotubes-reduced graphene oxide network assembled on nylon filter membrane. Sensors Actuators B 229:355–361

    Article  Google Scholar 

  68. Raghu S, Santhosh PN, Ramaprabhu S (2016) Nanostructured palladium modified graphitic carbon nitride e high performance room temperature hydrogen sensor. Int J Hydrogen Energy 41:20779–207786

    Article  Google Scholar 

  69. Shivaraman MS, Lundström I, Svensson C, Hammarsten H (1976) Hydrogen sensitivity of palladium thin-oxide silicon Schottky barriers. Electron Lett 12:483–484

    Article  Google Scholar 

  70. Lundström I, Shivaraman S, Svensson C, Lundkvist L (1975) A hydrogen-sensitive MOS field-effect transistor. Appl Phys Lett 26:55–57

    Article  Google Scholar 

  71. Steele MC, Hile JW, MacIver BA (1976) Hydrogen-sensitive palladium gate MOS capacitors. J Appl Phys 47:2537–2538

    Article  Google Scholar 

  72. Hung C-W, Lin H-L, Chen H-I, Tsai Y-Y, Lai P-H, Fu S-I, Chuang H-M, Liu W-C (2007) Comprehensive study of a Pd–GaAs high electron mobility transistor (HEMT)-based hydrogen sensor. Sensors Actuators B 122:81–88

    Article  Google Scholar 

  73. Anderson T, Ren F, Pearton S, Kang BS, Wang H-T, Chang C-Y, Lin J (2009) Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices. Sensors 9:4669–4694

    Article  Google Scholar 

  74. Irokawa Y (2011) Hydrogen sensors using nitride-based semiconductor diodes: the role of metal/semiconductor interfaces. Sensors 11:674–695

    Article  Google Scholar 

  75. Chiua S-Y, Huanga H-W, Huanga T-H, Lianga K-C, Liua K-P, Tsaib J-H, Lour W-S (2009) Comprehensive investigation on planar type of Pd–GaN hydrogen sensors. Int J Hydrogen Energy 34:5604–5615

    Article  Google Scholar 

  76. Hunter GW (1992) P.G.Neudeck, G.D. Jefferson, et al., the development of hydrogen sensors technology at Nasa Lewis research Centre, pp. 106141–106118. In: Proc. 4th Ann. Space Syst. Health manage. Technol. Conf., Cincinnati, USA, NASA technical Memo.106141

    Google Scholar 

  77. Arbab A, Spetz A, Lundstrom I (1993) Gas sensors for high-temperature operation based on metal-oxide-silicon carbide (MOSiC) devices. Sensors Actuators B 15:19–23

    Article  Google Scholar 

  78. Trinchi A, Kandasamy S, Wlodarski W (2008) High temperature field effect hydrogen and hydrocarbon gas sensors based on SiC MOS devices. Sensors Actuators B 133:705–716

    Article  Google Scholar 

  79. Yamazoe N, Tamaki J, Miura N (1996) Role of hetero-junctions in oxide semiconductor gas sensors. Mater Sci Eng B 41:178–181

    Article  Google Scholar 

  80. Christofides C, Mandelis CA (1989) Operating characteristics and comparison of photopyroelectric and piezoelectric sensors for trace hydrogen gas detection. II. Piezoelectric quartz-crystal microbalance sensor. J Appl Phys 66:3986–3992

    Article  Google Scholar 

  81. Miura N (1991) New-type calorimetric gas sensor using temperature characteristics of piezoelectric quartz crystal fitted with noble metal catalyst film. Sensors Actuators B 5:211–217

    Article  Google Scholar 

  82. D’Amico A, Palma A, Verona E (1982) Surface acoustic wave hydrogen sensor. Sensors Actuators 3:31–39

    Article  Google Scholar 

  83. Kerroum I, Fall ME, Reinhardt A, Domingue F (2016) Hydrogen effect on density and Young’s modulus of thin films in acoustic sensors. Sensors Actuators B 223:520–526

    Article  Google Scholar 

  84. Ha NH, Nam NH, Dung DD, Phuong NH, Thach PD, Hong HS (2017) Hydrogen gas sensing using palladium-graphene nanocomposite material based on surface acoustic wave. J Nanomater 2017:9057250

    Article  Google Scholar 

  85. Wang C, Mandelis A, Au-Ieong KP (2001) Physical mechanism of reflectance inversion in hydrogen gas sensor with Pd/PVDF structures. Sensors Actuators B 73:100–105

    Article  Google Scholar 

  86. Chadwick B, Gal M (1993) Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium. Appl Surf Sci 68:135–138

    Article  Google Scholar 

  87. Yarai A, Nakanishi T (2010) Optical fiber hydrogen sensor based on photothermal reflectance detection technique. J Phys Conf Ser 214(1–4):012039

    Article  Google Scholar 

  88. Hughes RC, Schubert WK (1992) Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J Appl Phys 71:542–544

    Article  Google Scholar 

  89. Luna-Moreno D, Monzón-Hernández D, Villatoro J, Badenes G (2007) Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd–Au thin films. Sensors Actuators B 125:66–71

    Article  Google Scholar 

  90. Cui L, Chen Y, Zhang G (2009) An optical fiber hydrogen sensor with Pd/ag film. Opt Lett 5:220–223

    Article  Google Scholar 

  91. Butler MA (1994) Micromirror optical-fibre hydrogen sensor. Sensors Actuators B 22:142–145

    Article  Google Scholar 

  92. Liu P, Lee S, Cheong HM, Tracy CE, Pitts JR, Smith RD (2002) Stable Pd/V2O5 optical H2 sensor. J Electrochem Soc 149:H76

    Article  Google Scholar 

  93. Fedtke P et al (2004) Hydrogen sensor based on optical and electrical switching. Sensors Actuators B 100:151–157

    Article  Google Scholar 

  94. Wang C, Mandelis A, Garcia JA (1999) Pd/PVDF thin film hydrogen sensor system based on photopyroelectric purely-thermal-wave interference. Sensors Actuators B 60:228–237

    Article  Google Scholar 

  95. Sekimoto S et al (2000) A fibre-optic evanescent-wave hydrogen gas sensor using palladium supported tungsten oxide. Sensors Actuators B 66:142–145

    Article  Google Scholar 

  96. Chan CC, Hsu WC, Chang CC, Hsu CS (2010) Preparation and characterization of gasochromic Pt/WO3 hydrogen sensor by using the Taguchi design method. Sensors Actuators B 145:691–697

    Article  Google Scholar 

  97. Hamagami J, Oh Y, Watanabe Y, Takata M (1993) Preparation and characterization of an optically detectable H2 gas sensor consisting of Pd/MoO3 thin films. Sensors Actuators B 13:281–283

    Article  Google Scholar 

  98. Ando M, Kobayashi T, Iijimac S, Harutaa M (1997) Optical recognition of CO and H2 by use of gas-sensitive Au–Co3O4 composite films. J Mater Chem 7:1779–1783

    Article  Google Scholar 

  99. Imai Y et al (2004) Optically readable hydrogen sensor using Pd/Y double-layered thin films. Adv Technol Mater Process J 6:57–62

    Google Scholar 

  100. Huiberts JN, Griessen R, Rector JH, Wijngaarden RJ, Dekker JP, de Groot DG, Koeman NJ (1996) Yttrium and lanthanum hydride films with switchable optical properties. Nature 380:231–234

    Article  Google Scholar 

  101. Butler MA (1984) Optical fibre hydrogen sensor. Appl Phys Lett 45:1007–1009

    Article  Google Scholar 

  102. Tabib-Azar M, Suptapun B, Petrick R, Kazemi A (1999) Highly sensitive hydrogen sensor using palladium coated fibre optics with exposed cores and evanescent field interaction. Sensors Actuators B 56:158–163

    Article  Google Scholar 

  103. Monzón-Hernández D, Luna-Moreno D, Martínez-Escobar D (2009) Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sensors Actuators B 136:562–566

    Article  Google Scholar 

  104. Sutapun B, Tabib-Azar M, Kazemi A (1999) Pd-coated electrooptic fibre Bragg grating sensor for multiplexed hydrogen sensing. Sensors Actuators B 60:27–34

    Article  Google Scholar 

  105. Dai J, Zhu L, Wang G, Xiang F, Qin Y, Wang M, Yang M (2017) Optical fiber grating hydrogen sensors: a review. Sensors 17:577

    Article  Google Scholar 

  106. Sumida S, Okazaki S, Asakura S, Nakagawa H, Murayama H, Hasegawa T (2005) Distributed hydrogen determination with fiber-optic sensor. Sensors Actuators B 108:508–514

    Article  Google Scholar 

  107. Zhang Y-N, Peng H, Qian X, Zhang Y, An G, Zhao Y (2017) Recent advancements in optical fiber hydrogen sensors. Sensors Actuators B 244:393–416

    Article  Google Scholar 

  108. Wadell C, Syrenova S, Langhammer C (2014) Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano 8:11925–11940

    Article  Google Scholar 

  109. Elosúa C, Vidondo I, Arregui FJ, Bariain C, Luquin A, Laguna M, Matías IR (October 2013) Lossy mode resonance optical fiber sensor to detect organic vapors. Sensors Actuators B 187:65–71

    Article  Google Scholar 

  110. Mishra SK, Usha SP, Gupta BD (2016) A lossy mode resonance-based fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and nanoparticles. Meas Sci Technol 27:045103

    Article  Google Scholar 

Download references

Acknowledgements

E.L is supported by the Catalan Institution for research and Advanced Studies via the ICREA Academia Award. E.N. gratefully acknowledges a pre-doctoral grant from MINECO-FEDER (grant. no. BES-2016-076582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Llobet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Llobet, E., Navarrete, E. (2018). Nanomaterials for the Selective Detection of Hydrogen at Trace Levels in the Ambient. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics