Skip to main content

Efficient Utilization of Supercritical Carbon Dioxide as Both Reactant and Reaction Medium for Synthetic Applications

  • Living reference work entry
  • First Online:
Book cover Handbook of Ecomaterials
  • 776 Accesses

Abstract

Carbon dioxide is an attractive C1 building block in organic synthesis. However, due to the inert nature of CO2, its activation and incorporation into organic substrates still remain a significant synthetic challenge. Accordingly, special methodologies (catalysts and/or reaction media) have been developed for CO2 activation.

Supercritical CO2 is considered to offer advantages as a reaction medium and a substrate because of its unique physicochemical properties, such as high gaseous miscibility, efficient mass transfer due to enhanced diffusivity, easily tunable properties with variation of pressure or temperature, and disappearance of the gas–liquid phase boundary peculiar to the supercritical state. In addition, CO2, which is nontoxic and has an easily accessible critical point, can replace hazardous organic solvents. Moreover, by utilizing supercritical CO2 we can simplify the separation process.

This chapter first provides an introduction to the supercritical fluids. Some of the applications of supercritical CO2 both as a reactant and as a green reaction medium in synthesis of heterocyclic compounds such as cyclic carbonates, oxazolidinones, quinazolines, etc. are exemplified and discussed in the next sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chen W, Zhong L-x, Peng X-w, Sun R-c, Lu F-c (2015) Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse. An agricultural waste. ACS Sustain Chem Eng 3:147–152

    Article  Google Scholar 

  2. Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L et al (2006) Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: characterization of a key organotin oxide intermediate. Catal Today 115:80–87

    Article  Google Scholar 

  3. Tamura M, Honda M, Nakagawa Y, Tomishige K (2014) Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. J Chem Technol Biotechnol 89:19–33

    Article  Google Scholar 

  4. Mizuno T, Iwai T, Ishino Y (2004) The simple solvent-free synthesis of 1H-quinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett 45:7073–7075

    Article  Google Scholar 

  5. Sadjadi S (2016) Supercritical fluids in nanoreactor technology. In: Sadjadi S (ed) Organic nanoreactors: from molecular to supramolecular organic compounds. Academic, Chennai, pp 373–420

    Chapter  Google Scholar 

  6. Kawanami H, Ikushima Y (2002) Regioselectivity and selective enhancement of carbon dioxide fixation of 2-substituted aziridines to 2-oxazolidinones under supercritical conditions. Tetrahedron Lett 43:3841–3844

    Article  Google Scholar 

  7. http://www.supercriticalfluid.org/Supercritical-fluids.146.0.html

  8. Weibel GL, Ober CK (2003) An overview of supercritical CO2 applications in microelectronics processing. Microelectron Eng 65:145–152

    Article  Google Scholar 

  9. Knez Z, Markočič E, Leitgeb M, Primožič M, Knez Hrnčič M et al (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243

    Article  Google Scholar 

  10. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191

    Article  Google Scholar 

  11. Miners SA, Rance GA, Khlobystov AN (2016) Chemical reactions confined within carbon nanotubes. ChemSocRev 45:4727–4746

    Google Scholar 

  12. Zhang X, Heinonen S, Levanen E (2014) Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Adv 4:61137–61152

    Article  Google Scholar 

  13. Oakes RS, Clifford AA, Rayner CM (2001) The use of supercritical fluids in synthetic organic chemistry. J Chem Soc Perkin Trans 1:917–941

    Article  Google Scholar 

  14. Munshi P, Ghosh A, Beckman EJ, Patel Y, George J et al (2010) Tuning catalyst solubility in CO2 by changing molar volume. Green Chem Lett Rev 3:319–328

    Article  Google Scholar 

  15. http://www1.chem.leeds.ac.uk/People/CMR/props.html

  16. Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895

    Article  Google Scholar 

  17. Sako T, Fukai T, Sahashi R (2002) Cycloaddition of oxirane group with carbon dioxide in the supercritical homogeneous state. Ind Eng Chem Res 41:5353–5358

    Article  Google Scholar 

  18. Sun J, Fujita S-I, Zhao F, Arai M (2005) A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Appl Catal A Gen 287:221–226

    Article  Google Scholar 

  19. Yasuda H, He L-N, Sakakura T (2002) Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride. J Catal 209:547–550

    Article  Google Scholar 

  20. Kawanami H, Ikushima Y (2000) Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem Commun 2089–2090

    Google Scholar 

  21. Lu X-B, Xiu J-H, He R, Jin K, Luo L-M et al (2004) Chemical fixation of CO2 to ethylene carbonate under supercritical conditions: continuous and selective. Appl Catal A Gen 275:73–78

    Article  Google Scholar 

  22. He L-N, Yasuda H, Sakakura T (2003) New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions. Green Chem 5:92–94

    Article  Google Scholar 

  23. Aprile C, Giacalone F, Agrigento P, Liotta LF, Martens JA et al (2011) Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: a high-throughput study in supercritical conditions. Chem Sus Chem 4:1830–1837

    Article  Google Scholar 

  24. Jiang J-L, Gao F, Hua R, Qiu X (2005) Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free conditions. J Org Chem 70:381–383

    Article  Google Scholar 

  25. ChaoRong Q, HuanFeng J (2010) Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. Sci China Chem 53:1566–1570

    Article  Google Scholar 

  26. Yasuda H, He L-N, Takahashi T, Sakakura T (2006) Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl Catal A Gen 298:177–180

    Article  Google Scholar 

  27. Wang J-Q, Yue X-D, Cai F, He L-N (2007) Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catal Commun 8:167–172

    Article  Google Scholar 

  28. Du Y, Cai F, Kong D-L, He L-N (2005) Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem 7:518–523

    Article  Google Scholar 

  29. Kawanami H, Sasaki A, Matsui K, Ikushima Y (2003) A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chem Commun 896–897

    Google Scholar 

  30. Du Y, Wang J-Q, Chen J-Y, Cai F, Tian J-S et al (2006) A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Lett 47:1271–1275

    Article  Google Scholar 

  31. Jutz F, Grunwaldt J-D, Baiker A (2008) Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in “supercritical” CO2. J Mol Catal A Chem 279:94–103

    Article  Google Scholar 

  32. Qiu J, Zhao Y, Li Z, Wang H, Fan M et al (2016) Efficient ionic-liquid-promoted chemical fixation of CO2 into a-alkylidene cyclic carbonates. Chem Sus Chem 9:1–9

    Article  Google Scholar 

  33. Kayaki Y, Yamamoto M, Ikariya T (2007) Stereoselective formation of α-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide. J Org Chem 72:647–649

    Article  Google Scholar 

  34. Ca’ ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T et al (2011) Effective guanidine-catalyzed synthesis of carbonate and carbamate derivatives from propargyl alcohols in supercritical carbon dioxide. Adv Synth Catal 353:133–146

    Article  Google Scholar 

  35. Jiang H-F, Wang A-Z, Liu H-L, Qi C-R (2008) Reusable polymer-supported amine-copper catalyst for the formation of α-alkylidene cyclic carbonates in supercritical carbon dioxide. Eur J Org Chem 2008(13):2309–2312

    Article  Google Scholar 

  36. Du Y, Kong D-L, Wang H-Y, Cai F, Tian J-S et al (2005) Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J Mol Catal A Chem 241:233–237

    Article  Google Scholar 

  37. Aresta M, Dibenedetto A, Dileo C, Tommasi I, Amodio E (2003) The first synthesis of a cyclic carbonate from a ketal in SC-CO2. J Supercrit Fluids 25:177–182

    Article  Google Scholar 

  38. Miura T, Fujioka S, Takemura N, Iwasaki H, Ozeki M et al (2014) Sythesis of 6-substituted 3-(alkoxycarbonyl)-5-aryl-α-pyrones. Synthesis 46:496–502

    Google Scholar 

  39. Lee JS (2015) Recent advances in the synthesis of 2-pyrones. Mar Drugs 13:1581–1620

    Article  Google Scholar 

  40. Reetz MT, Konen W, Strack T (1993) Supercritical carbon dioxide as a reaction medium and reaction partner. Chimia 47:493–493

    Google Scholar 

  41. Inoue Y, ltoh Y, Kazama H, Hashimoto H (1980) Reaction of dialkyl-substituted alkynes with carbon dioxide catalyzed by nickel(0) complexes. Incorporation of carbon dioxide in alkyne dimers and novel cyclotrimerization of the alkynes. Bull Chem Soc Jpn 53:3329–3333

    Article  Google Scholar 

  42. Shestakov AS, Sidorenko OE, Bushmarinov IS, Shikhaliev KS, Antipin MY (2009) 3-aryl(alkyl)quinazoline-2,4(1H,3H)-diones and their alkyl derivatives. Russ J Org Chem 45:1691–1696

    Article  Google Scholar 

  43. Gao J, He L-N, Miao C-X, Chanfreau S (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067

    Article  Google Scholar 

  44. Nale DB, Saigaonkar SD, Bhanage BM (2014) An efficient synthesis of quinazoline-2,4(1H,3H)-Dione from CO2 and 2-aminobenzonitrile using [Hmim]OH/SiO2 as a base functionalized supported ionic liquid phase catalyst. J CO2 Util 8: 67–73

    Google Scholar 

  45. https://www.revolvy.com/main/index.php?s=1,3-Dimethyl-2-imidazolidinone

  46. https://www.mitsuichemicals.com/dmi-aproticsolvent-applications.htm

  47. Seki T, Kokubo Y, Ichikawa S, Suzuki T, Kayaki Y et al (2009) Mesoporous silica-catalysed continuous chemical fixation of CO2 with N,N′-dimethylethylenediamine in supercritical CO2: the efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chem Commun 21(3):349–351

    Article  Google Scholar 

  48. Xiao L-f, Xu L-w, Xia C-g (2007) A method for the synthesis of 2-oxazolidinones and 2-imidazolidinones from five-membered cyclic carbonates and b-aminoalcohols or 1,2-diamines. Green Chem 9:369–372

    Article  Google Scholar 

  49. Soldi L, Massera C, Costa M, N. Della Ca’ (2014) A novel one-pot synthesis of oxazolidinones through direct introduction of CO2 into allylamine derivatives. Tetrahedron Lett 55: 1379–1383

    Article  Google Scholar 

  50. Du Y, Wu Y, Liu A-H, He L-N (2008) Quaternary ammonium bromide functionalized polyethylene glycol: a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J Org Chem 73:4709–4712

    Article  Google Scholar 

  51. Lu X-B (2016) CO2-mediated formation of chiral fine chemicals. In: Lu X-B (ed) Carbon dioxide and organometallics (topics in organometallic chemistry), vol 53. Springer, Cham

    Chapter  Google Scholar 

  52. Kathalikkattil AC, Tharun J, Roshan R, Soek H-G, Park D-W (2012) Efficient route for oxazolidinone synthesis using heterogeneous biopolymer catalysts from unactivated alkyl aziridine and CO2 under mild conditions. Appl Catal A 447–448:107–114

    Article  Google Scholar 

  53. Liu X-F, Wang M-Y, He L-N (2017) Heterogeneous catalysis for oxazolidinone synthesis from aziridines and CO2. Curr Org Chem 21:698–707

    Article  Google Scholar 

  54. Dou X-Y, He L-N, Yang Z-Z (2012) Proline-catalyzed synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. Synth Commun 42:62–74

    Article  Google Scholar 

  55. Dou X-Y, He L-N, Yang Z-Z, Wang J-L (2010) Catalyst-free process for the synthesis of 5-aryl-2-oxazolidinones via cycloaddition reaction of aziridines and carbon dioxide. Synlett 14:2159–2163

    Google Scholar 

  56. Jiang H-F, Ye I-W, Qi C-R, Huang L-B (2010) Naturally occurring a-amino acid: a simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. Tetrahedron Lett 51:928–932

    Article  Google Scholar 

  57. AnHua L, LiangNian H, ShiYong P, ZhongDa P, JingLun W et al (2010) Environmentally benign chemical fixation of CO2 catalyzed by the functionalized ion-exchange resins. Sci China Chem 53:1578–1585

    Article  Google Scholar 

  58. Xu JX, Zhao JW, Jia ZB (2011) Efficient catalyst-free chemical fixation of carbon dioxide into 2-oxazolidinones under supercritical condition. Chin Chem Lett 22:1063–1066

    Article  Google Scholar 

  59. Jiang H-F, Zhao J-W (2009) Silver-catalyzed activation of internal propargylic alcohols in supercritical carbon dioxide: efficient and eco-friendly synthesis of 4-alkylidene-1,3-oxazolidin-2-ones. Tetrahedron Lett 50:60–62

    Article  Google Scholar 

  60. Jiang H-F, Zhao J, Wang A (2008) An efficient and eco-friendly process for the conversion of carbon dioxide into oxazolones and oxazolidinones under supercritical conditions. Synthesis 5:763–769

    Article  Google Scholar 

  61. Maggi R, Bertolotti C, Orlandini E, Oro C, Sartori G et al (2007) Synthesis of oxazolidinones in supercritical CO2 under heterogeneous catalysis. Tetrahedron Lett 48:2131–2134

    Article  Google Scholar 

  62. Kayaki Y, Yamamoto M, Suzuki T, Ikariya T (2006) Carboxylative cyclization of propargylamines with supercritical carbon dioxide. Green Chem 8:1019–1021

    Article  Google Scholar 

  63. Patil YP, Tambade PJ, Jagtap SR, Bhanage B (2008) Synthesis of 2-oxazolidinones/2-imidazolidinones from CO2, different epoxides and amino alcohols/alkylene diamines using BrPh3+P-PEG600-P+Ph3Br as homogenous recyclable catalyst. J Mol Catal A Chem 289:14–21

    Article  Google Scholar 

  64. Fujita S-i, Kanamaru H, Senboku H, Arai M (2006) Preparation of cyclic urethanes from amino alcohols and carbon dioxide using ionic liquid catalysts with alkali metal promoters. Int J Mol Sci 7:438–450

    Article  Google Scholar 

  65. Pulla S, Felton CM, Gartia Y, Ramidi P, Ghosh A (2013) Synthesis of 2-oxazolidinones by direct condensation of 2-aminoalcohols with carbon dioxide using chlorostannoxanes. Sustainable Chem Eng 1:309–312

    Article  Google Scholar 

  66. Kawanami H, Ikushima Y (2002) Synthesis of 2-oxazolidinone from b-aminoalcohol using supercritical carbon dioxide. J Jpn Petrol Inst 45:321–324

    Article  Google Scholar 

  67. Zhao J, Jiang H (2012) Copper (I) catalyzed synthesis of 1,3-oxazolidin-2-ones from alkynes, amines, and carbon dioxide under solvent-free conditions. Tetrahedron Lett 53:6999–7002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sodeh Sadjadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Sadjadi, S. (2017). Efficient Utilization of Supercritical Carbon Dioxide as Both Reactant and Reaction Medium for Synthetic Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics