Skip to main content

Interval Timing

  • Living reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior

Synonyms

Time perception

Definition

Interval timing refers to perception and behavioral control with respect to time in the seconds to minutes range.

Introduction

Adapting behavior to the temporal relationships that occur in the environment is critical for survival and requires both perception and behavioral control with respect to time. The perception of time without an external aid, such as a clock, is a capacity that is so inherent that it is often overlooked. We can easily conclude that a stoplight is broken because we sense that we have been sitting at the light for longer than is typical. But how is this temporal sense and behavioral control manifest? Modalities such as vision, audition, and olfaction are processed through dedicated sensory structures that are impacted by different forms of energy, in the form of light, sound waves, or volatile particles to influence perception. In contrast, time perception does not result from measuring change in one specific form of external...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arcediano, F., Escobar, M., & Miller, R. R. (2003). Temporal integration and temporal backward associations in human and nonhuman subjects. Learning & Behavior, 31(3), 242–256.

    Article  Google Scholar 

  • Balci, F., Gallistel, C. R., Allen, B. D., Frank, K. M., Gibson, J. M., & Brunner, D. (2009). Acquisition of peak responding: What is learned? Behavioural Processes, 80(1), 67–75. https://doi.org/10.1016/j.beproc.2008.09.010

    Article  PubMed  Google Scholar 

  • Balsam, P. D., Fairhurst, S., & Gallistel, C. R. (2006). Pavlovian contingencies and temporal information. Journal of Experimental Psychology: Animal Behavior Processes, 32(3), 284–294. https://doi.org/10.1037/0097-7403.32.3.284

    PubMed  Google Scholar 

  • Buonomano, D. V., & Merzenich, M. M. (1995). Temporal information transformed into a spatial code by a neural network with realistic properties. Science, 267(5200), 1028–1030.

    Article  PubMed  Google Scholar 

  • Church, R. M., & Broadbent, H. A. (1991). A connectionist model of timing. In S. G. J. E. R. S. Michael & L. Commons (Eds.), Neural network models of conditioning and action. Quantitative analyses of behavior series (pp. 225–240). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology: Animal Behavior Processes, 20(2), 135–155.

    PubMed  Google Scholar 

  • Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18(18), 7426–7435.

    PubMed  Google Scholar 

  • Dallérac, G., Graupner, M., Knippenberg, J., Martinez, R. C. R., Tavares, T. F., Tallot, L., … Doyère, V. (2017). Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control. Nature Communications, 8, 13920. https://doi.org/10.1038/ncomms13920.

  • Delamater, A. R., & Holland, P. C. (2008). The influence of CS-US interval on several different indices of learning in appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 34(2), 202–222. https://doi.org/10.1037/0097-7403.34.2.202

    PubMed  PubMed Central  Google Scholar 

  • Emmons, E. B., De Corte, B. J., Kim, Y., Parker, K. L., Matell, M. S., & Narayanan, N. S. (2017). Rodent medial frontal control of temporal processing in the dorsomedial striatum. The Journal of Neuroscience, 37(36), 8718–8733. https://doi.org/10.1523/JNEUROSCI.1376-17.2017

    Article  PubMed  Google Scholar 

  • Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84, 279–325.

    Article  Google Scholar 

  • Gibbon, J., & Balsam, P. (1981). Spreading associations in time. In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioning theory. New York: Academic Press.

    Google Scholar 

  • Grossberg, S., & Schmajuk, N. A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks, 2, 79–102.

    Article  Google Scholar 

  • Herzog, E. D., Aton, S. J., Numano, R., Sakaki, Y., & Tei, H. (2004). Temporal precision in the mammalian circadian system: A reliable clock from less reliable neurons. Journal of Biological Rhythms, 19(1), 35–46. https://doi.org/10.1177/0748730403260776

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12(7), 273–280. https://doi.org/10.1016/j.tics.2008.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, H. A., Goel, A., & Buonomano, D. V. (2010). Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nature Neuroscience, 13(8), 917–919. https://doi.org/10.1038/nn.2579

    Article  PubMed  PubMed Central  Google Scholar 

  • Kacelnik, A., & Brunner, D. (2002). Timing and foraging: Gibbon’s scalar expectancy theory and optimal patch exploitation. Learning and Motivation, 33(1), 177–195. https://doi.org/10.1006/lmot.2001.1110

    Article  Google Scholar 

  • Lewis, P. A., Miall, R. C., Daan, S., & Kacelnik, A. (2003). Interval timing in mice does not rely upon the circadian pacemaker. Neuroscience Letters, 348(3), 131–134. https://doi.org/10.1016/S0304-3940(03)00521-4

    Article  PubMed  Google Scholar 

  • Machado, A., & Keen, R. (1999). Learning to time (LET) or scalar expectancy theory (SET)? A critical test of two models of timing. Psychological Science, 10(3), 285–290. https://doi.org/10.1111/1467-9280.00152

    Article  Google Scholar 

  • Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Brain Research: Cognitive Brain Research, 21(2), 139–170.

    PubMed  Google Scholar 

  • Meck, W. H. (1996). Neuropharmacology of timing and time perception. Brain Research: Cognitive Brain Research, 3(3–4), 227–242.

    PubMed  Google Scholar 

  • Meck, W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109, 93–107. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16890210

    Article  PubMed  Google Scholar 

  • Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology: CB, 25(9), 1113–1122. https://doi.org/10.1016/j.cub.2015.02.036

    Article  PubMed  Google Scholar 

  • Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W., & Binder, J. R. (1997). Distributed neural systems underlying the timing of movements. Journal of Neuroscience, 17(14), 5528–5535.

    PubMed  Google Scholar 

  • Roberts, S. (1982). Cross-modal use of an internal clock. Journal of Experimental Psychology: Animal Behavior Processes, 8(1), 2–22.

    PubMed  Google Scholar 

  • Shuler, M. G., & Bear, M. F. (2006). Reward timing in the primary visual cortex. Science, 311(5767), 1606–1609.

    Article  PubMed  Google Scholar 

  • Simen, P., Rivest, F., Ludvig, E. A., Balci, F., & Killeen, P. (2013). Timescale invariance in the pacemaker-accumulator family of timing models. Timing & Time Perception, 1(2), 159–188.

    Article  Google Scholar 

  • Swanton, D. N., Gooch, C. M., & Matell, M. S. (2009). Averaging of temporal memories by rats. Journal of Experimental Psychology: Animal Behavior Processes, 35(3), 434–439.

    PubMed  PubMed Central  Google Scholar 

  • Wearden, J. H., & McShane, B. (1988). Interval production as an analogue of the peak procedure: Evidence for similarity of human and animal timing processes. The Quarterly Journal of Experimental Psychology Section B, 40(4), 363–375. https://doi.org/10.1080/14640748808402330

    Google Scholar 

  • Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. NeuroImage, 49(2), 1728–1740. https://doi.org/10.1016/j.neuroimage.2009.09.064

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Matell .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Matell, M.S., McGovern, D.J. (2018). Interval Timing. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_789-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_789-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics