Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Intelligence

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_778-1

Introduction

The question of animal intelligence has long been of human interest dating back to Plato, Aristotle, and Plotinus’s notion of scala naturae, the natural order of organisms. Later, Romanes, a colleague of Darwin’s, published Animal Intelligence (1882) in which he reported collected anecdotes of animal behavior from pet owners and naturalists which suggested that many animals show intelligent behaviors. Romanes’s approach tends to ask which human abilities are shared by other animals, but it suffers from the flawed logic exemplified by the cartoon depicted in Fig. 1. Given this bias, it is not surprising that animals that are more similar to us in their sensory, motor, and motivation systems are often judged by us to be more intelligent.
This is a preview of subscription content, log in to check access.

References

  1. Akins, C., & Zentall, T. R. (1996). Evidence for true imitative learning in Japanese quail. Journal of Comparative Psychology, 110, 316–320.PubMedCrossRefGoogle Scholar
  2. Alessandri, J., Darcheville, J.-C., Delevoye-Turrell, Y., & Zentall, T. R. (2008). Preference for rewards that follow greater effort and greater delay. Learning & Behavior, 36, 352–358.CrossRefGoogle Scholar
  3. Aronson, E., & Mills, J. (1959). The effect of severity of initiation on liking for a group. Journal of Abnormal and Social Psychology, 59, 177–181.CrossRefGoogle Scholar
  4. Babb, S. J., & Crystal, J. D. (2006). Discrimination of what, when, and where is not based on time of day. Learning & Behavior, 34, 124–130.CrossRefGoogle Scholar
  5. Ballentine, B., Hyman, J., & Nowicki, S. (2004). Vocal performance influences female response to male bird song: An experimental test. Behavioral Ecology, 15, 163–168.CrossRefGoogle Scholar
  6. Beck, B. B. (1980). Animal tool behavior: The use and manufacture of tools by animals. New York: Garland.Google Scholar
  7. Bhatt, R. S., Wasserman, E. A., Reynolds, W. F., Jr., & Knauss, K. S. (1988). Conceptual behavior in pigeons: Categorization of both familiar and novel examples from four classes of natural and artificial stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 14, 219–234.Google Scholar
  8. Bitterman, M. E. (1975). The comparative analysis of learning. Science, 188, 699–709.PubMedCrossRefGoogle Scholar
  9. Bitterman, M. E., & Mackintosh, N. J. (1969). Habit reversal and probability learning: Rats, birds, and fish. In R. M. Gilbert & N. S. Sutherland (Eds.), Animal discrimination learning (pp. 163–185). New York: Academic.Google Scholar
  10. Blanco, C., Ibáñez, S.-R. A., Blanco-Jerez, J., & Nunes, E. V. (2000). Epistemology, pathophysiology, and treatment of pathological gambling. CNS Drugs, 13, 397–407.CrossRefGoogle Scholar
  11. Boesch, C., & Boesch, H. (1990). Tool use and tool making in wild chimpanzees. Folia Primatology, 54, 86–99.CrossRefGoogle Scholar
  12. Boysen S. T., & Berntsen, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 21, 82–86.Google Scholar
  13. Boysen, S. T., & Capaldi, E. J. (1993). The development of numerical competence: Animal and human models. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  14. Bryne, R. W., & Russon, A. E. (1998). Learning by imitation: A hierarchical approach. Behavioral and Brain Sciences, 21, 667–721.Google Scholar
  15. Cadée, G. C. (1989). Size-selective transport of shells by birds and its palaecological implications. Paleontology, 32, 429–437.Google Scholar
  16. Capaldi, E. J. (1993). Animal number abilities: Implications for a hierarchical approach to instrumental learning. In S. T. Boysen & E. J. Capaldi (Eds.), The development of numerical competence (pp. 191–209). Hillsdale: Erlbaum.Google Scholar
  17. Capaldi, E. J., & Miller, D. J. (1988). Counting in rats: Its functional significance and the independent cognitive processes that constitute it. Journal of Experimental Psychology: Animal Behavior Processes, 14, 3–17.Google Scholar
  18. Chan, D., & Woollacott, M. (2007). Effects of level of meditation experience on attentional focus: Is the efficiency of executive or orientation networks improved? The Journal of Alternative and Complementary Medicine, 13, 651–658.PubMedCrossRefGoogle Scholar
  19. Chapuis, N., & Varlet, C. (1987). Short cuts by dogs in natural surroundings. Quarterly Journal of Experimental Psychology, 39, 49–64.Google Scholar
  20. Charnov, E. L., & Krebs, J. R. (1975). Evolution of alarm calls altruism or manipulation. American Naturalist, 109, 107–112.CrossRefGoogle Scholar
  21. Clayton, N. S., & Dickinson, A. (1999). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113, 403–416.PubMedCrossRefGoogle Scholar
  22. Clement, T. S., Feltus, J., Kaiser, D. H., & Zentall, T. R. (2000). “Work ethic” in pigeons: Reward value is directly related to the effort or time required to obtain the reward. Psychonomic Bulletin & Review, 7, 100–106.CrossRefGoogle Scholar
  23. Collette, T. S., & Graham, P. (2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14, 475–477.CrossRefGoogle Scholar
  24. Couvillon, P. A., & Bitterman, M. E. (1992). A conventional conditioning analysis of “transitive inference” in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 18, 308–310.Google Scholar
  25. Cumming, W. W., & Berryman, R. (1961). Some data on matching behavior in the pigeon. Journal of the Experimental Analysis of Behavior, 4, 281–284.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Davis, H. (1992). Transitive inference in rats (Rattus norvegicus). Journal of Comparative Psychology, 106, 342–349.PubMedCrossRefGoogle Scholar
  27. Davis, H., & Memmott, J. (1982). Counting behavior in animals: A critical evaluation. Psychological Bulletin, 92, 547–571.CrossRefGoogle Scholar
  28. Dorrance, B. R., Kaiser, D. H., & Zentall, T. R. (2000). Event duration discrimination by pigeons: The choose-short effect may result from retention-test novelty. Animal Learning & Behavior, 28, 344–353.CrossRefGoogle Scholar
  29. Dunbar, R. I. M. (1993). The coevolution of neocortical size, group size, and language in humans. Behavioral and Brain Sciences, 16, 681–735.CrossRefGoogle Scholar
  30. Edwards, C. A., Jagielo, J. A., Zentall, T. R., & Hogan, D. E. (1982). Acquired equivalence and distinctiveness in matching-to-sample by pigeons: Mediation by reinforcer-specific expectancies. Journal of Experimental Psychology: Animal Behavior Processes, 8, 244–259.Google Scholar
  31. Farb, N. A. S., Segal, Z. V., Mayberg, H., Bean, J., McKeon, D., Fatima, Z., & Anderson, A. K. (2007). Attending to the present: Mindfulness meditation reveals distinct neural modes of self-reference. Social Cognitive and Affective Neuroscience, 2, 313–322.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fay, J. M., & Caroll, R. W. (1994). Chimpanzee tool use for honey and termite extraction in Central Africa. American Journal of Primatology, 34, 309–317.CrossRefGoogle Scholar
  33. Fersen, L. V., Wynne, C. D. L., Delius, J. D., & Staddon, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334–341.Google Scholar
  34. Festinger, L. (1957). A theory of cognitive dissonance. Stanford: Stanford University Press.Google Scholar
  35. Gallup, G. G. (1970). Chimpanzees self-recognition. Science, 167, 86–87.CrossRefGoogle Scholar
  36. Gallup, G. G., & Suarez, S. D. (1991). Social responding to mirrors in rhesus monkeys: Effects of temporary mirror removal. Journal of Comparative Psychology, 105, 376–379.PubMedCrossRefGoogle Scholar
  37. Gardner, R. A., & Gardner, B. T. (1998). The structure of learning from sign stimuli to sign language. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  38. Gillan, D. J. (1981). Reasoning in the chimpanzee: II. Transitive inference. Journal of Experimental Psychology: Animal Behavior Processes, 7, 150–164.Google Scholar
  39. Gould, J. (1974). Honey bee communication. Nature, 252, 100–101.CrossRefGoogle Scholar
  40. Grant, D. S. (1981). Stimulus control of information processing in pigeon short-term memory. Learning and Motivation, 12, 19–39.CrossRefGoogle Scholar
  41. Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61, 139–151.PubMedCrossRefGoogle Scholar
  42. Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56, 51–65.PubMedCrossRefGoogle Scholar
  43. Hayes, S. C. (1983). When more in less: Quantity versus quality of publications in the evaluation of vitae. The American Psychologist, 38, 1398–1400.CrossRefGoogle Scholar
  44. Herman, L. M., Richards, D. G., & Wolz, J. P. (1984). Comprehension of sentences by bottlenosed dolphins. Cognition, 16, 129–219.PubMedCrossRefGoogle Scholar
  45. Herrnstein, R. J., & deVilliers, P. A. (1980). Fish as a natural category for people and pigeons. Psychology of Learning and Motivation, 14, 59–95.CrossRefGoogle Scholar
  46. Herrnstein, R. J., & Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146, 549–551.PubMedCrossRefGoogle Scholar
  47. Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 2, 285–301.Google Scholar
  48. Honig, W. K., & Thompson, R. K. R. (1982). Retrospective and prospective processing in animal working memory. In G. Bower (Ed.), The psychology of learning and motivation (Vol. 16, pp. 239–283). Orlando: Academic.Google Scholar
  49. Hsee, C. K. (1998). Less is better: When low-value options are valued more highly than high-value options. Journal of Behavioral Decision Making, 11, 107–121.CrossRefGoogle Scholar
  50. Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century-Crofts.Google Scholar
  51. Hunt, G. R. (1996). Manufacture and use of hook-tools by New Caledonian crows. Nature, 379, 249–251.CrossRefGoogle Scholar
  52. Jackson-Smith, P. A., Zentall, T. R., & Steirn, J. N. (1993). Prospective and retrospective memory processes in pigeons’ performances on a successive delayed matching-to-sample task. Learning and Motivation, 24, 1–22.CrossRefGoogle Scholar
  53. Kacelnik, A., & Marsh, B. (2002). Cost can increase preference in starlings. Animal Behaviour, 63, 245–250.CrossRefGoogle Scholar
  54. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  55. Klein, E. D., & Zentall, T. R. (2003). Imitation and affordance learning by pigeons (Columba livia). Journal of Comparative Psychology, 117, 414–419.PubMedCrossRefGoogle Scholar
  56. Klein, E. D., Bhatt, R. S., & Zentall, T. R. (2005). Contrast and the justification of effort. Psychonomic Bulletin & Review, 12, 335–339.CrossRefGoogle Scholar
  57. de Kort, S. R., Eldermire, E. R. B., Cramer, E. R. A., & Vehrencamp, S. A. (2008). The deterrent effect of bird song in territory defense. Behavioral Ecology, 20, 200–206.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kralik, J. D., Xu, E. R., Knight, E. J., Khan, S. A., & Levine, J. W. (2012). When less is more: Evolutionary origins of the affect heuristic. PLoS ONE, 7(10), e46240.  https://doi.org/10.1371/journal.pone.0046240.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lazareva, O. F., & Wasserman, E. A. (2012). Transitive inference in pigeons: Measuring the associative values of stimuli B and D. Behavioural Processes, 89, 244–255.PubMedCrossRefGoogle Scholar
  60. Lipp, H.-P., Vyssotski, A. L., Wolfer, D. P., Renaudineau, S., Savini, M., Tröster, G., & Dell’Omo, G. (2004). Pigeon homing along highways and exits. Current Biology, 14, 1239–1249.PubMedCrossRefGoogle Scholar
  61. Lord, C. G. (1992). Was cognitive dissonance theory a mistake? Psychological Inquiry, 3(4), 339–342.CrossRefGoogle Scholar
  62. Lui, J. H., Hansen, D. V., & Kriegstein, A. R. (2011). Development and evolution of the human neocortex. Cell, 146, 18–36.PubMedPubMedCentralCrossRefGoogle Scholar
  63. MacArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. American Naturalist, 100, 603–609.CrossRefGoogle Scholar
  64. Mackintosh, N. J. (1965). Selective attention in animal discrimination learning. Psychological Bulletin, 64, 124–150.PubMedCrossRefGoogle Scholar
  65. McGonigle, B. O., & Chalmers, M. (1977). Are monkeys logical? Nature, 267, 694–696.PubMedCrossRefGoogle Scholar
  66. Meyer, D. R. (1971). Habits and concepts of monkeys. In L. E. Jarrard (Ed.), Cognitive processes of nonhuman primates (pp. 83–102). New York: Academic.CrossRefGoogle Scholar
  67. Morris, D. (1967). The naked ape: A zoologist’s study of the human animal. New York: Mcgraw Hill.Google Scholar
  68. Navarro, A. D., & Fantino, E. (2005). The sunk cost effect in pigeons and humans. Journal of the Experimental Analysis of Behavior, 83, 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nguyen, N. H., Klein, E. D., & Zentall, T. R. (2005). Imitation of two-action sequences by pigeons. Psychonomic Bulletin & Review, 12, 514–518.CrossRefGoogle Scholar
  70. Pattison, K. F., & Zentall, T. R. (2014). Suboptimal choice by dogs: When less is better than more. Animal Cognition, 17, 1019–1022.PubMedCrossRefGoogle Scholar
  71. Pepperberg, I. M. (1987). Interspecies communication: A tool for assessing conceptual abilities in an African Grey parrot. In G. Greenberg & E. Tobach (Eds.), Language, cognition, and consciousness: Integrative levels (pp. 31–56). Hillsdale: Erlbaum.Google Scholar
  72. Peterson, G. B. (1984). How expectancies guide behavior. In H. L. Roitblat, T. G. Bever, & H. S. Terrace (Eds.), Animal cognition (pp. 135–148). Hillsdale: Erlbaum.Google Scholar
  73. Peterson, G. B., Wheeler, R. L., & Trapold, M. A. (1980). Enhancement of pigeons’ conditional discrimination performance by expectancies of reinforcement and nonreinforcement. Animal Learning & Behavior, 8, 22–30.CrossRefGoogle Scholar
  74. Piaget J. (1928). Judgement and reasoning in the child (trans: Warden, M.). London: Routledge, Kagan Paul.Google Scholar
  75. Piaget, J. (1951). Play, dreams, and imitation in childhood. New York: W. W. Norton.Google Scholar
  76. Plotnik, J. M., de Waal, F. B. M., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences, 103, 17053–17057.CrossRefGoogle Scholar
  77. Premack, D., & Premack, A. J. (1983). The mind of an ape. New York: Norton.Google Scholar
  78. Prior, H., Schwarz, A., & Gunturkun, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biology, 6(8), e202.  https://doi.org/10.1371/journal.pbio.0060202.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Empirical evaluation of mental time travel. The Behavioral and Brain Sciences, 30, 330–331.CrossRefGoogle Scholar
  80. Rayburn-Reeves, R. M., Miller, H. C., & Zentall, T. R. (2010). “Counting” by pigeons: Discrimination of the number of biologically relevant sequential events. Learning & Behavior, 38, 169–176.CrossRefGoogle Scholar
  81. Reiss, D., & Marino, L. (2001). Self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences, 98, 5937–5942.CrossRefGoogle Scholar
  82. Roberts, W. A. (2002). Are animals stuck in time? Psychological Bulletin, 128, 473–489.PubMedCrossRefGoogle Scholar
  83. Roberts, W. A., & Grant, D. S. (1976). Studies of short-term memory in the pigeon using the delayed matching-to-sample procedure. In D. L. Medin, W. A. Roberts, & R. T. Davis (Eds.), Processes of animal memory (pp. 79–112). Hillsdale: Erlbaum.Google Scholar
  84. Roper, K. L., Kaiser, D. H., & Zentall, T. R. (1995). Directed forgetting in pigeons: The role of alternative memories in the effectiveness of forget cues. Animal Learning & Behavior, 23, 280–285.CrossRefGoogle Scholar
  85. Savage-Rumbaugh, S., Shanker, S. G., & Taylor, T. J. (1998). Apes, language and the human mind. New York: Oxford University Press.Google Scholar
  86. Seyfartth, R. M., Cheney, D. L., & Marler, P. (1980). Monkey responses to three different alarm calls: Evidence of predator classification and semantic communication. Science, 210, 801–803.CrossRefGoogle Scholar
  87. Sherburne, L. M., Zentall, T. R., & Kaiser, D. H. (1998). Timing in pigeons: The choose-short effect may result from “confusion” between delay and intertrial intervals. Psychonomic Bulletin & Review, 5, 516–522.CrossRefGoogle Scholar
  88. Singer, R. A., Abroms, B. D., & Zentall, T. R. (2007). Formation of a simple cognitive map by rats. International Journal of Comparative Psychology, 19, 417–425.Google Scholar
  89. Singer, R. A., & Zentall, T. R. (2007). Pigeons learn to answer the question ‘where did you just peck?’ and can report peck location when unexpectedly asked. Learning & Behavior, 35, 184–189.CrossRefGoogle Scholar
  90. Slotnick, B. M., & Katz, H. M. (1974). Olfactory learning-set formation in rats. Science, 185, 796–798.PubMedCrossRefGoogle Scholar
  91. Smith, A. P., & Zentall, T. R. (2016). Suboptimal choice in pigeons: Choice is primarily based on the value of the conditioned reinforcer rather than overall reinforcement rate. Journal of Experimental Psychology: Animal Behavior Processes, 42, 212–220.Google Scholar
  92. Stagner, J. P., Laude, J. R., & Zentall, T. R. (2012). Pigeons prefer discriminative stimuli independently of the overall probability of reinforcement and of the number of presentations of the conditioned reinforcer. Journal of Experimental Psychology: Animal Behavior Processes, 38, 446–452.PubMedGoogle Scholar
  93. Steirn, J. N., Weaver, J. E., & Zentall, T. R. (1995). Transitive inference in pigeons: Simplified procedures and a test of value transfer theory. Animal Learning & Behavior, 23, 76–82.CrossRefGoogle Scholar
  94. Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133–167.PubMedGoogle Scholar
  95. Terrace, H. S. (1979). Nim. New York: Knopf.Google Scholar
  96. Trapold, M. A. (1970). Are expectancies based on different reinforcing events discriminably different? Learning and Motivation, 1, 129–140.CrossRefGoogle Scholar
  97. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 382–403). New York: Academic.Google Scholar
  98. Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In H. Terrace & J. Metcalfe (Eds.), The missing link in cognition: Evolution of self-knowing consciousness (pp. 3–56). New York: Oxford University Press.Google Scholar
  99. Urcuioli, P. J., & Zentall, T. R. (1986). Retrospective memory in pigeons’ delayed matching-to-sample. Journal of Experimental Psychology: Animal Behavior Processes, 12, 69–77.PubMedGoogle Scholar
  100. Urcuioli, P. J., Zentall, T. R., Jackson-Smith, P., & Steirn, J. N. (1989). Evidence for common coding in many-to-one matching: Retention, intertrial interference, and transfer. Journal of Experimental Psychology: Animal Behavior Processes, 15, 264–273.Google Scholar
  101. Vasconcelos, M. (2008). Transitive inference in non-human animals: An empirical and theoretical analysis. Behavioural Processes, 78, 313–334.PubMedCrossRefGoogle Scholar
  102. Wasserman, E. A., DeVolder, C. L., & Coppage, D. J. (1992). Non-similarity based conceptualization in pigeons via secondary or mediated generalization. Psychological Science, 6, 374–379.CrossRefGoogle Scholar
  103. Wasserman, E. A., Hugart, J. A., & Kirkpatrick-Steger, K. (1995). Pigeons show same-different 14 conceptualization after training with complex visual stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 21, 248–252.PubMedGoogle Scholar
  104. Watanabe, S., Sakamoto, J., & Wakita, M. (1995). Pigeon’s discrimination of paintings by Monet and Picasso. Journal of the Experimental Analysis of Behavior, 63, 165–174.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Weaver, J. E., Steirn, J. N., & Zentall, T. R. (1997). Transitive inference in pigeons: Control for differential value transfer. Psychonomic Bulletin and Review, 4, 113–117.CrossRefGoogle Scholar
  106. Weir, A. A. S., Chappell, J., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297, 981.PubMedCrossRefGoogle Scholar
  107. Wiltschko, R., & Wiltschko, W. (2003). Avian navigation: From historical to modern concepts. Animal Behaviour, 65, 257–272.CrossRefGoogle Scholar
  108. Wright, A. A., & Katz, J. S. (2006). Mechanisms of same/different concept learning in primates and avians. Behavioural Processes, 72, 234–254.PubMedCrossRefGoogle Scholar
  109. Zajonc, R. B. (1965). Social facilitation. Science, 149, 269–274.PubMedCrossRefGoogle Scholar
  110. Zentall, T. R., & Hogan, D. E. (1976). Pigeons can learn identity, difference, or both. Science, 191, 408–409.PubMedCrossRefGoogle Scholar
  111. Zentall, T. R. (1993). Animal cognition: An approach to the study of animal behavior. In T. R. Zentall (Ed.), Animal cognition: A tribute to Donald A. Riley (pp. 3–15). Hillsdale: Erlbaum.Google Scholar
  112. Zentall, T. R., Edwards, C. A., Moore, B. S., & Hogan, D. E. (1981). Identity: The basis for both matching and oddity learning in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 7, 70–86.Google Scholar
  113. Zentall, T. R. (1996). An analysis of imitative learning in animals. In C. M. Heyes & B. G. Galef Jr. (Eds.), Social learning and tradition in animals (pp. 221–243). New York: Academic.CrossRefGoogle Scholar
  114. Zentall, T. R. (1997). Animal memory: The role of instructions. Learning and Motivation, 28, 248–267.CrossRefGoogle Scholar
  115. Zentall, T. R. (2012). Perspectives on social learning. Journal of Comparative Psychology, 126, 114–128.  https://doi.org/10.1037/a0025381.PubMedCrossRefGoogle Scholar
  116. Zentall, T. R., & Singer, R. A. (2007). Within-trial contrast: Pigeons prefer conditioned reinforcers that follow a relatively more rather than less aversive event. Journal of the Experimental Analysis of Behavior, 88, 131–149.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zentall, T. R., & Smeets, P. M. (Eds.). (1996). Stimulus class formation in humans and animals. Amsterdam: North Holland.Google Scholar
  118. Zentall, T. R., & Stagner, J. P. (2011). Maladaptive choice behavior by pigeons: An animal analog of gambling (sub-optimal human decision making behavior). Proceedings of the Royal Society B: Biological Sciences, 278, 1203–1208.PubMedCrossRefGoogle Scholar
  119. Zentall, T. R., Sutton, J. E., & Sherburne, L. M. (1996). True imitative learning in pigeons. Psychological Science, 7, 343–346.CrossRefGoogle Scholar
  120. Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin & Review, 8, 685–690.CrossRefGoogle Scholar
  121. Zentall, T. R., Laude, J. R., Daniels, C. W., & Case, J. P. (2013). When less means more. Paper presented at the meeting of the American Psychological Association, August, Honolulu.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of KentuckyLexingtonUSA

Section editors and affiliations

  • Kenneth Leising
    • 1
  1. 1.Texas Christian UniversityForth WorthUSA