Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Predator Defense

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_708-1



A set of traits and mechanisms by which prey avoid being detected, recognized, subjugated, or ultimately consumed by their predators.


Most organisms are at risk from predation. For this reason, many species have evolved certain traits or strategies that confer different degrees of protection. Such traits and strategies can be physical (morphological), chemical, or behavioral and can be exhibited by both individuals and groups. As a result, predator defenses are very diverse and are widespread across the animal kingdom. However, several key strategies have evolved separately in multiple groups of animals.

In order to classify and understand these defenses, we must first understand how animals fall prey to others. The process of predation can be thought of as a sequence, beginning with the detection of the prey by a potential predator, followed by its recognition as a suitable prey item, its subjugation and, finally, its...

This is a preview of subscription content, log in to check access.


  1. Brodie, E. D. I. I. I., & Brodie, E. D., Jr. (1999). Predator-prey arms races. Bioscience, 49, 557–568.CrossRefGoogle Scholar
  2. Brower, L. P., & Fink, L. S. (1985). A natural toxic defense system: Cardenolides in butterflies versus birds. Annals of the New York Academy of Sciences, 443, 171–188.CrossRefPubMedGoogle Scholar
  3. Carlson, N. V., Healy, S. D., & Templeton, C. N. (2017). A comparative study of how British tits encode predator threat in their mobbing calls. Animal Behaviour, 125, 77–92.CrossRefGoogle Scholar
  4. Castilla, A. M., Gosá, A., Galán, P., & Pérez-Mellado, V. (1999). Green tails in lizards of the genus Podarcis: Do they influence the intensity of predation? Herpetologica, 55, 530–537.Google Scholar
  5. Conner, W. E. (Ed.). (2009). Tiger Moths and Woolly Bears—behaviour, ecology, and evolution of the Arctiidae. Oxford: Oxford University Press.Google Scholar
  6. Deban, S. M., O’Reilly, J. C., & Theimer, T. C. (1994). Mechanism of defensive inflation in the chuckwalla, Sauromalus obesus. Journal of Experimental Zoology, 270, 451–459.CrossRefGoogle Scholar
  7. Endler, J. A. (1991). Interactions between predators and prey. In Behavioural ecology an evolutionary approach (pp. 169–196). Cambridge: Cambridge University Press.Google Scholar
  8. Francq, E. N. (1969). Behavioral aspects of feigned death in the opossum Didelphis marsupialis. American Midland Naturalist, 81, 556–568.CrossRefGoogle Scholar
  9. Halperin, T., Carmel, L., & Hawlena, D. (2016). Movement correlates of lizards’ dorsal pigmentation patterns. Functional Ecology, 31, 370–376.CrossRefGoogle Scholar
  10. Jackson, J. F., Ingram, W., & Campbell, H. W. (1976). Dorsal pigmentation pattern of snakes as an anti-predator strategy – multivariate approach. American Naturalist, 110, 1029–1053.CrossRefGoogle Scholar
  11. Johnsen, S. (2001). Hidden in plain sight: The ecology and physiology of organismal transparency. The Biological Bulletin, 201, 301–318.CrossRefPubMedGoogle Scholar
  12. Magarlamov, Y. T., Melnikova, I. D., & Chernyshev, V. A. (2017). Tetrodotoxin-producing bacteria: Detection, distribution and migration of the toxin in aquatic systems. Toxins, 9, 166 (5 pages).CrossRefPubMedCentralGoogle Scholar
  13. Pope, D. S. (2000). Testing function of fiddler crab claw waving by manipulating social context. Behavioral Ecology and Sociobiology, 47, 432–437.CrossRefGoogle Scholar
  14. Poulton, E. B. (1890). The colours of animals: Their meaning and use. London: Kegan Paul, Trench, Trubner.Google Scholar
  15. Prudic, K. L., Stoehr, A. M., Wasik, B. R., & Monteiro, A. (2014). Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proceedings of the Royal Society B, 282(1798), 20141531.  https://doi.org/10.1098/rspb.2014.1531.CrossRefGoogle Scholar
  16. Riipi, M., Alatalo, R. V., Lindström, L., & Mappes, J. (2001). Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature, 413, 512–514.CrossRefPubMedGoogle Scholar
  17. Rojas, B., Devillechabrolle, J., & Endler, J. A. (2014). Paradox lost: Variable color-pattern geometry is associated with differences in movement in aposematic frogs. Biology Letters, 10(6), 20140193.CrossRefPubMedCentralGoogle Scholar
  18. Rowland, H. M. (2009). From Abbott Thayer to the present day: What have we learned about the function of countershading? Philosophical Transactions of the Royal Society B, 364, 59–527.CrossRefGoogle Scholar
  19. Saporito, R. A., Donnelly, M. A., Spande, T. F., & Garraffo, H. M. (2012). A review of chemical ecology in poison frogs. Chemoecology, 22, 159–168.CrossRefGoogle Scholar
  20. Scherz, M. D., Daza, J. D., Köhler, J., Vences, M., & Glaw, F. (2017). Off the scale: A new species of fish-scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales. PeerJ, 5, e2955.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Shahrudin, S. (2016). Antipredator behaviour of Limnonectes blythii (Boulenger, 1920) (Anura: Dicroglossidae) from Kedah, peninsular Malaysia. International Journal of Zoology. 2016: 2816762.Google Scholar
  22. Skelhorn, J., Rowland, H. M., Speed, M. P., & Ruxton, G. D. (2010). Masquerade: Camouflage without crypsis. Science, 327, 51.CrossRefPubMedGoogle Scholar
  23. Stevens, M., & Merilaita, S. (2009). Animal camouflage: Current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423–427.CrossRefGoogle Scholar
  24. Thayer, G. H. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern. In Being a summary of Abbott H. Thayer’s discoveries. New York: Macmillan.Google Scholar
  25. Umbers, K. D. L., De Bona, S., White, T. E., Lehtonen, J., Mappes, J., Endler, J. A. (2017). Deimatism: a neglected component of antipredator defence. Biology Letters. 13: 20160936.Google Scholar
  26. Valkonen, J. K., Nokelainen, O., & Mappes, J. (2011). Antipredatory function of head shape for vipers and their mimics. PLoS One, 6(7), e22272.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Warkentin, K. M. (1995). Adaptive plasticity in hatching age: A response to predation risk trade-offs. PNAS, 92, 3507–3510.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Williams, K. S., & Simon, C. (1995). The ecology, behavior, and evolution of periodical cicadas. Annual Review of Entomology, 40, 269–295.CrossRefGoogle Scholar
  29. Zagrobelny, M., Bak, S., Olsen, C. E., & Møller, B. L. (2007). Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochemistry and Molecular Biology, 37, 1189–1197.CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland

Section editors and affiliations

  • Caroline Leuchtenberger
    • 1
  1. 1.Federal Institute of Education, Science and TechnologySanta MariaBrazil