Skip to main content

Knockout Genes

  • Living reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior
  • 42 Accesses

Gene knockout (KO) is a genetic engineering method by which both the alleles of certain gene/genes are made inoperative/nonfunctional or deleted from the organism’s genome. Knocking out a particular gene provides valuable information about functional role played by that gene and has proved as an effective method to study genetic basis of various diseases including cancer, diabetes, neurodegeneration, as well as aging. Gene knockout could be a “whole body knockout” if the particular gene is deleted from every cell of a multicellular organism or it could be a “conditional knockout” if the gene is deleted only in specific group of cells/tissues or from a particular organ. Gene knockout is one of the essential components of functional genomics whereby using homologous recombination or more recently clustered regularly interspaced short palindromic repeats (CRISPR), a mutated version of wild gene achieved by in vitro mutagenesis is exchanged with original gene to render it nonfunctional....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., … Deschenes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of Clinical Investigation, 128, 1043–1056.

    Google Scholar 

  • Chavez, J. C., Bachmeier, C., & Kharfan-Dabaja, M. A. (2019). CAR T-cell therapy for B-cell lymphomas: Clinical trial results of available products. Therapeutic Advances in Hematology, 10, 1–20.

    Google Scholar 

  • Cowan, P. J., Hawthorne, W. J., & Nottle, M. B. (2019). Xenogeneic transplantation and tolerance in the era of CRISPR-Cas9. Current Opinion in Organ Transplantation, 24, 5–11.

    Article  Google Scholar 

  • Cox, D. B., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21, 121–131.

    Article  Google Scholar 

  • Epinat, J. C., Arnould, S., Chames, P., Rochaix, P., Desfontaines, D., Puzin, C., … Lacroix, E. (2003). A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Research, 31, 2952–2962.

    Google Scholar 

  • Fan, H. C., Chi, C. S., Lee, Y. J., Tsai, J. D., Lin, S. Z., & Harn, H. J. (2018). The role of gene editing in neurodegenerative diseases. Cell Transplantation, 27, 364–378.

    Article  Google Scholar 

  • Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397–405.

    Article  Google Scholar 

  • Hall, B., Limaye, A., & Kulkarni, A. B. (2009). Chapter 19, Unit 19.12 19.12.11-17, Overview: Generation of gene knockout mice. In Current protocols in cell biology. New Jersy, USA: John Wiley & Sons Inc. ISBN: 978-0-471-24108-9.

    Google Scholar 

  • Ho, B. X., Loh, S. J. H., Chan, W. K., & Soh, B. S. (2018). In vivo genome editing as a therapeutic approach. International Journal of Molecular Sciences, 19, 2721.

    Article  Google Scholar 

  • Hongbao, M., Young, M., & Yan, Y. (2013). Gene knockout research literatures. Researcher, 9(8):71–80.

    Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  Google Scholar 

  • Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 14, 49–55.

    Article  Google Scholar 

  • Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5, 1.

    Article  Google Scholar 

  • Lin, F. L., Sperle, K., & Sternberg, N. (1984). Model for homologous recombination during transfer of DNA into mouse L cells: Role for DNA ends in the recombination process. Molecular and Cellular Biology, 4, 1020–1034.

    Article  Google Scholar 

  • Marth, J. D. (1996). Recent advances in gene mutagenesis by site-directed recombination. The Journal of Clinical Investigation, 97, 1999–2002.

    Article  Google Scholar 

  • Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., … Hinkley, S. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143.

    Google Scholar 

  • Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., … Chen, C. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 9, e106718.

    Google Scholar 

  • O’Rahilly, S. (2009). Human genetics illuminates the paths to metabolic disease. Nature, 462, 307–314.

    Article  Google Scholar 

  • Ramanan, V., Shlomai, A., Cox, D. B. T., Schwartz, R. E., Michailidis, E., Bhatta, A., … Bhatia, S. N. (2015). CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific Reports, 5, 10833.

    Google Scholar 

  • Sánchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR-Cas9 system in cancer biology. Nature Reviews. Cancer, 15, 387–395.

    Article  Google Scholar 

  • Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347.

    Article  Google Scholar 

  • Thomas, K. R., & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51, 503–512.

    Article  Google Scholar 

  • Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews. Genetics, 11, 636–646.

    Article  Google Scholar 

  • Vogel, G. (2007). Nobel Prizes. A knockout award in medicine. Science, 318, 178–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayaz Ahmad Mir .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mir, F.A. (2020). Knockout Genes. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_529-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_529-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics