Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Social Network Analysis

  • Sebastian Sosa
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1882-1

Introduction

Social network analysis (SNA) originates from a branch of mathematics called graph theory. This disciplinary field has developed several concepts and analytical methods that permit the study of links between the components of a system. SNA is the result of multiple studies from different research fields and particularly from social sciences such as psychology, sociology, and anthropology.

The SNA approach has facilitated the study of many other subjects in a large variety of disciplines such as anthropology, mathematics, economics, psychology, ethology, ecology, sociology, computer sciences, physics, epidemiology, cell biology, and biochemistry (Prell 2011).

This entry is divided into three sections that can be read separately according to the reader’s needs:
  1. 1.

    Section 1: description of the use of SNA tools in life science, highlighting the great potential of these techniques across a wide range of animal research topics

     
  2. 2.

    Section 2 to Section 4: a thorough technical...

This is a preview of subscription content, log in to check access.

References

  1. Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340(6131), 485–488.CrossRefPubMedGoogle Scholar
  2. Almeling, L., Hammerschmidt, K., Sennhenn-Reulen, H., Freund, A. M., & Fischer, J. (2016). Motivational shifts in aging monkeys and the origins of social selectivity. Current Biology, 26(13), 1744–1749.CrossRefPubMedGoogle Scholar
  3. Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis testing: Problems, prevalence, and an alternative. The Journal of Wildlife Management, 64, 912–923.CrossRefGoogle Scholar
  4. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., & Vigna, S. (2012). Four degrees of separation. In Proceedings of the 4th annual ACM web science conference. ACM, pp. 33–42.Google Scholar
  5. Balasubramaniam, K. N., Beisner, B. A., Berman, C. M., De Marco, A., Duboscq, J., Koirala, S., Majolo, B., MacIntosh, A. J., McFarland, R., & Molesti, S. (2017). The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure. American Journal of Primatology.Google Scholar
  6. Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3747–3752.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bejder, L., Fletcher, D., & Bräger, S. (1998). A method for testing association patterns of social animals. Animal Behaviour, 56(3), 719–725.CrossRefPubMedGoogle Scholar
  8. Berman, C. M. (1982). The ontogeny of social relationships with group companions among free-ranging infant rhesus monkeys I. Social networks and differentiation. Animal Behaviour, 30(1), 149–162.CrossRefGoogle Scholar
  9. Cheney, D. L., Silk, J. B., & Seyfarth, R. M. (2016). Network connections, dyadic bonds and fitness in wild female baboons. Royal Society Open Science, 3(7), 160255.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Croft, D. P., Edenbrow, M., Darden, S. K., Ramnarine, I. W., van Oosterhout, C., & Cable, J. (2011a). Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behavioral Ecology and Sociobiology, 65(12), 2219–2227.CrossRefGoogle Scholar
  11. Croft, D. P., Madden, J. R., Franks, D. W., & James, R. (2011b). Hypothesis testing in animal social networks. Trends in Ecology & Evolution, 26(10), 502–507.CrossRefGoogle Scholar
  12. Egerton-Warburton, L. M., Querejeta, J. I., & Allen, M. F. (2007). Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany, 58(6), 1473–1483.CrossRefPubMedGoogle Scholar
  13. Farine, D. R. (2017). A guide to null models for animal social network analysis. Methods in Ecology and Evolution, 8, 1309.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fisher, D. N., Rodríguez-Muñoz, R., & Tregenza, T. (2016). Wild cricket social networks show stability across generations. BMC Evolutionary Biology, 16(1), 151.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Flack, J. C., Girvan, M., De Waal, F. B., & Krakauer, D. C. (2006). Policing stabilizes construction of social niches in primates. Nature, 439(7075), 426–429.CrossRefPubMedGoogle Scholar
  16. Hanneman, R., & Riddle, M. (2005). Introduction to social network methods. Riverside: University of California.Google Scholar
  17. Hinde, R. A. (1976). Interactions, relationships and social structure. Man, 11, 1–17.CrossRefGoogle Scholar
  18. Hoppitt, W., & Laland, K. N. (2013). Social learning: An introduction to mechanisms, methods, and models. Princeton: Princeton University Press.CrossRefGoogle Scholar
  19. Jirsa, V., Sporns, O., Breakspear, M., Deco, G., & McIntosh, A. R. (2010). Towards the virtual brain: Network modeling of the intact and the damaged brain. Archives Italiennes de Biologie, 148(3), 189–205.PubMedGoogle Scholar
  20. Krause, J., James, R., Franks, D. W., & Croft, D. P. (2014). Animal social networks. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. LaFlamme, B. (2015). Genetic modules for autism. Nature Genetics, 47(2), 105–105.Google Scholar
  22. Lazarsfeld, P. F., & Merton, R. K. (1954). Friendship as a social process: A substantive and methodological analysis. Freedom and control in modern. Society, 18(1), 18–66.Google Scholar
  23. Leung, C., & Chau, H. (2007). Weighted assortative and disassortative networks model. Physica A: Statistical Mechanics and its Applications, 378(2), 591–602.CrossRefGoogle Scholar
  24. Milgram, S. (1967). The small world problem. Psychology Today, 2(1), 60–67.Google Scholar
  25. Newman, M. E. (2003). Mixing patterns in networks. Physical Review E, 67(2), 026126.CrossRefGoogle Scholar
  26. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.CrossRefGoogle Scholar
  27. Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104(50), 19891–19896.CrossRefGoogle Scholar
  28. Opsahl, T. (2009). Structure and evolution of weighted networks. Queen Mary: University of London.Google Scholar
  29. Prell, C. (2011). Social network analysis: History, theory and methodology. London: Sage.Google Scholar
  30. Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social Networks, 29(2), 173–191.CrossRefGoogle Scholar
  31. Romano, V., Duboscq, J., Sarabian, C., Thomas, E., Sueur, C., & MacIntosh, A. J. (2016). Modeling infection transmission in primate networks to predict centrality-based risk. American Journal of Primatology, 78, 767.CrossRefPubMedGoogle Scholar
  32. Sosa, S. (2014). Structural architecture of the social network of a non-human primate (Macaca sylvanus): A study of its topology in La Forêt des Singes, Rocamadour. Folia Primatologica, 85(3), 154–163.CrossRefGoogle Scholar
  33. Sosa, S. (2016). The influence of gender, age, matriline and hierarchical rank on individual social position, role and interactional patterns in Macaca sylvanus at ‘La Forêt des singes’: A multilevel social network approach. Frontiers in Psychology, 7, 529.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sosa, S., Zhang, P., & Cabanes, G. (2017). Social networks dynamics revealed by temporal analysis: An example in a non-human primate (Macaca sylvanus) in “La Forêt des Singes”. American Journal of Primatology, 79(6), e22662.CrossRefGoogle Scholar
  35. Sueur, C., Jacobs, A., Amblard, F., Petit, O., & King, A. J. (2011a). How can social network analysis improve the study of primate behavior? American Journal of Primatology, 73(8), 703–719.CrossRefPubMedGoogle Scholar
  36. Sueur, C., Petit, O., De Marco, A., Jacobs, A., Watanabe, K., & Thierry, B. (2011b). A comparative network analysis of social style in macaques. Animal Behaviour, 82(4), 845–852.CrossRefGoogle Scholar
  37. Tsourakakis, C. E., Pachocki, J., & Mitzenmacher, M. (2017). Scalable motif-aware graph clustering. In Proceedings of the 26th international conference on world wide web: International world wide web conferences steering committee. pp. 1451–1460.Google Scholar
  38. Wey, T., Blumstein, D. T., Shen, W., & Jordán, F. (2008). Social network analysis of animal behaviour: A promising tool for the study of sociality. Animal Behaviour, 75(2), 333–344.CrossRefGoogle Scholar
  39. Whitehead, H. (2008). Analyzing animal societies: Quantitative methods for vertebrate social analysis. Chicago: University of Chicago Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Anthropology Department, School of Sociology and AnthropologySun Yat-sen UniversityGuangzhouChina

Section editors and affiliations

  • Zanna Clay
    • 1
  1. 1.Durham UniversityDurhamUK