Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford


  • Akash Mallick
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_171-1



MicroRNAs or miRNAs are small noncoding RNAs, which regulate gene expression at posttranscriptional level through RNA-protein interactions and thus influential for varieties of biological processes.


MicroRNAs (miRNAs) are small, functional noncoding RNAs of ~22 nucleotides – which are integral part of gene expression regulation at posttranscriptional level. They are involved in a wide array of biological processes such as cellular growth, proliferation, and differentiation and other fine-tuned developmental processes (Ameres and Zamore 2013). Such small RNAs were first discovered in Caenorhabditis elegans while finding the role of lin-4 in postembryonic cell lineage formation. Interestingly it was found that lin-4 does not code for any protein but represses lin-14 expression for proper lineage progression. Surprisingly, nothing much could be deciphered except the fact that both of them share high degree of sequence complementarity (Lee et al. 1993...

This is a preview of subscription content, log in to check access.


  1. Ameres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nature Reviews. Molecular Cell Biology, 14, 475–488.CrossRefPubMedGoogle Scholar
  2. Ameres, S. L., et al. (2010). Target RNA-directed trimming and tailing of small silencing RNAs. Science, 328, 1534–1539.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bracken, C. P., et al. (2014). Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. The EMBO Journal, 33, 2040–2056.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bruno, I. G., et al. (2011). Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Molecular Cell, 42, 500–510.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432, 231–235.CrossRefPubMedGoogle Scholar
  6. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19, 92–105.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Jonas, S., & Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature Reviews Genetics, 16, 421–433.CrossRefPubMedGoogle Scholar
  8. Kawahar, Y., Zinshteyn, B., Sethupathy, P., Iizasa, H., Hatzigeorgiou, A. G., Nishikura, K. (2007). Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140.CrossRefGoogle Scholar
  9. Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10, 126–139.CrossRefPubMedGoogle Scholar
  10. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.CrossRefPubMedGoogle Scholar
  11. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.CrossRefPubMedGoogle Scholar
  12. Lee, Y., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal, 23, 4051–4060.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Liu, N., et al. (2011). The exoribonuclease Nibbler controls 3′ end processing of microRNAs in Drosophila. Current Biology, 21, 1888–1893.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mathonnet, G., Fabian, M. R., Svitkin, Y. V., Parsyan, A., Huck, L., Murata, T., Biffo, S., Merrick, W. C., Darzynkiewicz, E., Pillai, R. S., Filipowicz, W., Duchaine, T. F., Sonenberg, N. (2007). MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science, 317, 1764–1767.CrossRefPubMedGoogle Scholar
  15. Parker, J. S., Parizotto, E. A., Wang, M., Roe, S. M., & Barford, D. (2009). Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Molecular Cell, 33, 204–214.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Perdigão-Henriques, R., et al. (2016). miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene, 35, 158–172.CrossRefPubMedGoogle Scholar
  17. Wee, L., Flores-Jasso, C. F., Salomon, W. & Zamore, P. D.(2012). Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell, 151, 1055–1067.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre for Chemical BiologyCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Section editors and affiliations

  • Akash Gautam
    • 1
  1. 1.Centre for Neural and Cognitive Sciences, School of Medical SciencesUniversity of HyderabadHyderabadIndia