Abstract
Synthetic biology is a rapidly developing field which aims to repurpose natural biological systems through the rational design of existing/new biological parts and systems, with a strong emphasis on applying engineering principles. Over the years, synthetic gene circuits have been designed to control and manipulate cellular gene expressions in practical applications including biosensing, biomanufacturing, bioremediation, and biotherapy. However, the design of genetic circuits to achieve the desired performances remains a daunting challenge compounded by typical issues of modularity, orthogonality, context dependency, stability, and predictability. To address this challenge, there has been a great advancement in our ability to design gene circuit, with new tools being developed and design principles being elucidated. As such, this chapter aims to review the underpinning process involved in gene circuit design, with the emphasis on applying it to cell-based biosensors. Accordingly, appropriate computer-aided design tools to be used during the design and construction phases as well as modelling tools that facilitate the rational design-build-test-learn cycle will be explored. Lastly, a compilation of the common failure modes as faced by typical users and recommended potential engineering solutions is presented. Moving forward, adopting better characterized genetic parts and their interfaces, embedded with appropriate design rules and principles, accompanied by advanced computer-aided tools, the full capabilities of synthetic biology can be realized as previously anticipated.
Keywords
- Cell-based biosensor
- Gene circuits
- Design principles
- Rational designs
- Tuning capabilities
- Model-driven approach
This is a preview of subscription content, access via your institution.
References
Alahi M, Mukhopadhyay S (2017) Detection methodologies for pathogen and toxins: a review. Sensors 17:1885. https://doi.org/10.3390/s17081885
Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J (2014) Kinetic models in industrial biotechnology – improving cell factory performance. Metab Eng 24:38–60. https://doi.org/10.1016/j.ymben.2014.03.007
An W, Chin JW (2009) Synthesis of orthogonal transcription- translation networks. PNAS 106:8477–8482
Anderson JK, Smith TG, Hoover TR (2009) Sense and sensibility: flagellum- mediated gene regulation. Trends Microbiol 18:30–37. https://doi.org/10.1016/j.tim.2009.11.001
Ang J, Harris E, Hussey BJ, Kil R, Mcmillen DR (2013) Tuning response curves for synthetic biology. ACS Synth Biol 2:547–567
Aoki SK, Lillacci G, Gupta A, Baumschlager A, Schweingruber D, Khammash M (2019) A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570:533. https://doi.org/10.1038/s41586-019-1321-1
Appleton E, Madsen C, Roehner N, Densmore D (2017) Design automation in synthetic biology. Cold Spring Harb Perspect Biol 9:a023978
Ay A, Arnosti DN (2011) Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol 46:137–151. https://doi.org/10.3109/10409238.2011.556597
Bae S, Park J, Kim J (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475. https://doi.org/10.1093/bioinformatics/btu048
Balleza E, Kim JM, Cluzel P (2018) Systematic characterization of maturation time of fluorescent proteins in living cells. Nat Methods 15:47. https://doi.org/10.1038/nmeth.4509
Baronas R, Ivanauskas F, Kulys J (2009) Mathematical modeling of biosensors: an introduction for chemists and mathematicians. Springer Science & Business Media, Dordrecht
Bergmann FT, Adams R, Moodie S, Cooper J, Glont M, Golebiewski M, Hucka M, Laibe C, Miller AK, Nickerson DP, Olivier BG, Rodriguez N, Sauro HM, Scharm M, Soiland-reyes S, Waltemath D, Yvon F (2014) COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project. BMC Bioinf 15:369
Bernard E, Wang B (2017) Synthetic cell-based sensors with programmed selectivity and sensitivity. In: Biosensors and biodetection. Humana Press, New York, pp 349–363
Bhosekar A, Ierapetritou M (2018) Advances in surrogate based modeling, feasibility analysis, and optimization: a review. Comput Chem Eng 108:250–267. https://doi.org/10.1016/j.compchemeng.2017.09.017
Bird LE, Rada H, Flanagan J, Diprose JM, Gilbert RJ, Owens RJ (2014) Application of in-fusion™ cloning for the parallel construction of E. coli expression vectors. In: DNA cloning and assembly methods. Humana Press, Totowa, New Jersey, pp 209–234
Boo A, Ellis T, Stan G (2019) Host-aware synthetic biology. Curr Opin Syst Biol 14:66–72. https://doi.org/10.1016/j.coisb.2019.03.001
Booth IR (2014) Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr Opin Microbiol 18:16–22. https://doi.org/10.1016/j.mib.2014.01.005
Briat C, Gupta A, Khammash M (2016) Antithetic integral feedback ensures robust perfect adaptation in Noisy biomolecular networks. Cell Syst 2:15–26. https://doi.org/10.1016/j.cels.2016.01.004
Brophy JAN, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11:508–520. https://doi.org/10.1038/nmeth.2926. Principles
Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381. https://doi.org/10.1038/nrmicro3239
Carpenter AC, Paulsen IT, Williams TC (2018) Blueprints for biosensors: design, limitations, and applications. Genes (Basel) 9:375. https://doi.org/10.3390/genes9080375
Carr SB, Beal J, Densmore DM (2017) Reducing DNA context dependence in bacterial promoters. PLoS One 12:e0176013
Casini A, Macdonald JT, De JJ, Christodoulou G, Freemont PS, Baldwin GS, Ellis T (2014) One-pot DNA construction for synthetic biology: the modular overlap-directed assembly with linkers (MODAL) strategy. Nucleic Acids Res 42:e7. https://doi.org/10.1093/nar/gkt915
Casini A, Storch M, Baldwin GS, Ellis T (2015) Bricks and blueprints: methods and standards for DNA assembly. Nat Rev Mol Cell Biol 16:568. https://doi.org/10.1038/nrm4014
Cayron J, Prudent E, Escoffier C, Gueguen E (2017) Pushing the limits of nickel detection to nanomolar range using a set of engineered bioluminescent Escherichia coli. Environ Sci Pollut Res 24:4–14. https://doi.org/10.1007/s11356-015-5580-6
Ceroni F, Algar R, Stan G, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415. https://doi.org/10.1038/nmeth.3339
Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN, Awan AR, Gilbert C, Stan G, Ellis T (2018) Burden-driven feedback control of gene expression. Nat Methods 15:387. https://doi.org/10.1038/nmeth.4635
Chandran D, Bergmann FT, Sauro HM (2010) Computer-aided design of biological circuits using TinkerCell. Bioeng Bugs 1:274–281
Chang H, Voyvodic PL, Zúñiga A, Bonnet J (2017) Microbially derived biosensors for diagnosis, monitoring and epidemiology. Microb Biotechnol 10:1031–1035. https://doi.org/10.1111/1751-7915.12791
Chao R, Yuan Y, Zhao H (2015) Recent advances in DNA assembly technologies. FEMS Yeast Res 15:1–9. https://doi.org/10.1111/1567-1364.12171
Chen Y, Liu P, Nielsen AAK, Brophy JAN, Clancy K, Peterson T, Voigt CA (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10:659. https://doi.org/10.1038/nmeth.2515
Choi K, Medley JK, König M, Stocking K, Smith L, Gu S, Sauro HM (2018) Tellurium: An extensible python-based modeling environment for systems and synthetic biology. Biosystems 171:74–79. https://doi.org/10.1016/j.biosystems.2018.07.006
Craney A, Hohenauer T, Xu Y, Navani NK, Li Y (2007) A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucleic Acids Res 35:e46. https://doi.org/10.1093/nar/gkm086
Daniel R, Almog R, Ron A, Belkin S, Shacahm Y (2008) Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode. Biosens Bioelectron 24:882–887. https://doi.org/10.1016/j.bios.2008.07.026
Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141. https://doi.org/10.1093/nar/gkq810
de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman JD, Chandran SS (2014) Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 3:97–106. https://doi.org/10.1021/sb4001992
Diwo C, Budisa N (2019) Alternative biochemistries for alien life: basic concepts and requirements for the design of a robust biocontainment system in genetic isolation. Genes (Basel) 10:17. https://doi.org/10.3390/genes10010017
Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012) TAL effector-nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122. https://doi.org/10.1093/nar/gks608
Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol 3:109–118. https://doi.org/10.1039/c0ib00070a
Enghiad B, Zhao H (2017) Programmable DNA-guided artificial restriction enzymes. ACS Synth Biol 6:752–757. https://doi.org/10.1021/acssynbio.6b00324
Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647. https://doi.org/10.1371/journal.pone.0003647
Fan M, Ferenc M, Juccheim A, LaManna C, Monroe M, Morgan K, Niehaus J, Patrick M, Swanson L, Julian T-P (2014) Plasmids 101: a desktop resource. Available at www.addgene.org
Freemont PS, Kitney RI (2012) Synthetic biology – a primer, rev edn. World Scientific Publishing Company
Freemont PS, Kitney RI (2015) Synthetic biology – a primer, rev edn. World Scientific Publishing Company
Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML, Adam L, Anderson JC, Bartley BA, Beal J, Chandran D, Chen J, Densmore D, Endy D, Grünberg R, Hallinan J, Hillson NJ, Johnson JD, Kuchinsky A, Lux M, Misirli G, Peccoud J, Plahar HA, Sirin E, Stan G, Villalobos A, Wipat A, Gennari JH, Myers CJ, Sauro HM (2014) The synthetic biology open language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32:545–550. https://doi.org/10.1038/nbt.2891
Gallagher RR, Patel JR, Interiano AL, Rovner AJ, Isaacs FJ (2015) Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res 43:1945–1954. https://doi.org/10.1093/nar/gku1378
Gibson DG, Young L, Chuang R, Venter JC, Iii CAH, Smith HO, America N (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343. https://doi.org/10.1038/NMETH.1318
Gibson DG, Smith HO, Iii CAH, Venter JC, Merryman C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7:901. https://doi.org/10.1038/nmeth.1515
Glass JI, Merryman C, Wise KS, Iii CAH, Smith HO (2017) Minimal cells – real and imagined. Cold Spring Harb Perspect Biol 9:a023861
Gold Book (2014) International Union of Pure and Applied Chemistry Compendium of chemical terminology. International Union of Pure and Applied Chemistry, Research Triangle Park
Gómez-tatay L, Hernández-andreu JM (2019) Biosafety and biosecurity in synthetic biology: a review. Crit Rev Environ Sci Technol 49:1587–1621. https://doi.org/10.1080/10643389.2019.1579628
Gounaris CA, Floudas CE (2009) A review of recent advances in global optimization. J Glob Optim 45:3–38. https://doi.org/10.1007/s10898-008-9332-8
Green J, Paget MS, Bank W (2004) Bacterial redox sensors. Nat Rev Microbiol 2:954. https://doi.org/10.1038/nrmicro1022
Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531. https://doi.org/10.1093/nar/gki376
Gui Q, Lawson T, Shan S, Yan L, Liu Y (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17:1623. https://doi.org/10.3390/s17071623
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J, Schneider-maunoury S, Shkumatava A, Teboul L, Kent J, Joly J (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. https://doi.org/10.1186/s13059-016-1012-2
Hancock EJ, Stan G, Arpino JAJ, Stan G (2015) Simplified mechanistic models of gene regulation for analysis and design. J R Soc Interface 12:20150312
Harrison ME, Dunlop MJ (2012) Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Front Microbiol 3:360. https://doi.org/10.3389/fmicb.2012.00360
Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M (2013) E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Res 41:e190. https://doi.org/10.1093/nar/gkt789
Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21. https://doi.org/10.1021/sb2000116
Holowko MB, Wang H, Jayaraman P, Poh CL (2016) Biosensing Vibrio cholerae with genetically engineered Escherichia coli. ACS Synth Biol 5:1275–1283. https://doi.org/10.1021/acssynbio.6b00079
Hoops S, Sahle S, Gauges R, Lee C, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22:3067–3074. https://doi.org/10.1093/bioinformatics/btl485
Huang H, Qian Y, Del Vecchio D (2018) A quasi-integral controller for adaptation of genetic modules to variable ribosome demand. Nat Commun 9:5415. https://doi.org/10.1038/s41467-018-07899-z
Hucka M, Sauro HM, Doyle J, Kitano H (2003) The systems biology markup language (SBML): a medium for representation and exchange of. Bioinformatics 19:524–531. https://doi.org/10.1093/bioinformatics/btg015
Hughes RM (2018) A compendium of chemical and genetic approaches to light-regulated gene transcription. Crit Rev Biochem Mol Biol 53:453–474. https://doi.org/10.1080/10409238.2018.1487382
Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253. https://doi.org/10.1126/science.aad6253
Hwang IY, Tan MH, Koh E, Ho CL, Poh CL, Chang MW (2014) Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol 3:228–237. https://doi.org/10.1021/sb400077j
Hynninen A, Tõnismann K, Virta M (2010) Improving the sensitivity of bacterial bioreporters for heavy metals. Bioeng Bugs 1:132–138
Jayaraman P, Devarajan K, Chua TK, Zhang H, Gunawan E, Poh CL (2016) Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res 44:6994–7005. https://doi.org/10.1093/nar/gkw548
Jayaraman P, Holowko MB, Yeoh JW, Lim S, Poh CL (2017) Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth Biol 6:1403–1415. https://doi.org/10.1021/acssynbio.7b00058
Jayaraman P, Yeoh JW, Zhang J, Poh CL (2018) Programming dynamic control of bacterial gene expression with the chimeric ligand and light-based promoter system. ACS Synth Biol 7:2627. https://doi.org/10.1021/acssynbio.8b00280
Justino C, Duarte A, Rocha-Santos T (2017) Recent progress in biosensors for environmental monitoring: a review. Sensors 17:2918. https://doi.org/10.3390/s17122918
Karamasioti E, Lormeau C, Stelling J (2017) Computational design of biological circuits: putting parts into context. Mol Syst Des Eng 2:410–421. https://doi.org/10.1039/c7me00032d
Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903. https://doi.org/10.1021/bc200151q
Kery MB, Feldman M, Livny J, Tjaden B (2014) TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42:W124–W129. https://doi.org/10.1093/nar/gku317
Kim HJ, Lim JW, Jeong H, Lee S, Lee D, Kim T, Lee SJ (2016) Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron 79:701–708. https://doi.org/10.1016/j.bios.2015.12.101
Knight T (2003) Idempotent vector design for standard assembly of biobricks. www.addgene.org
Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330. https://doi.org/10.1038/nrmicro2549
Kulkarni VV, Stan G-B, Raman K (eds) (2014a) A systems theoretic approach to systems and synthetic biology I: models and system characterizations. Springer, Dordrecht
Kulkarni VV, Stan G-B, Raman K (eds) (2014b) A systems theoretic approach to systems and synthetic biology II: analysis and design of cellular systems. Springer, Dordrecht
Kwok R (2010) Five hard truths for synthetic biology. Nat News 463:288–290
Kylilis N, Riangrungroj P, Lai H-E, Salema V, Fernández LA, Stan G-BV, Freemont PS, KM P (2019) Whole-cell biosensor with tunable limit of detection enables low-cost agglutination assays for medical diagnostic applications. ACS Sensors 4:370–378. https://doi.org/10.1021/acssensors.8b01163
Labun K, Montague TG, Krause M, Cleuren YNT, Valen E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47:W171–W174. https://doi.org/10.1093/nar/gkz365
Lee TM (2008) Over-the-counter biosensors: past, present, and future. Sensors 8:5535–5559. https://doi.org/10.3390/s8095535
Lin D, Callaghan CAO (2018) MetClo: methylase-assisted hierarchical DNA assembly using a single type IIS restriction enzyme. Nucleic Acids Res 46:e113. https://doi.org/10.1093/nar/gky596
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q (2018) Programming bacteria with light – sensors and applications in synthetic biology. Front Microbiol 9:2692. https://doi.org/10.3389/fmicb.2018.02692
Mann M, Wright PR, Backofen R (2017) IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 45:W435–W439. https://doi.org/10.1093/nar/gkx279
Mannan AA, Liu D, Zhang F (2017) Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synth Biol 6:1851–1859. https://doi.org/10.1021/acssynbio.7b00172
Mccormick K, Kautto N (2013) The bioeconomy in Europe: An overview. Sustainability 5:2589–2608. https://doi.org/10.3390/su5062589
McLaughlin JA, Myers CJ, Zundel Z, Mlslrll G, Zhang M, Ofiteru ID, Goñi-Moreno A, Wipat A (2018) SynBioHub: a standards-enabled design repository for synthetic biology. ACS Synth Biol 7:682–688. https://doi.org/10.1021/acssynbio.7b00403
Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofacial Res 6:153–159. https://doi.org/10.1016/j.jobcr.2015.12.002
Misirli G, Nguyen T, Mclaughlin JA, Vaidyanathan P, Jones TS, Densmore D, Myers C, Wipat A (2018) A computational workflow for the automated generation of models of genetic designs. ACS Synth Biol 8:1548. https://doi.org/10.1021/acssynbio.7b00459
Morio J (2011) Global and local sensitivity analysis methods for a physical system. Eur J Phys 32:1577. https://doi.org/10.1088/0143-0807/32/6/011
Mustafa F, Andreescu S (2018) Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 7:168. https://doi.org/10.3390/foods7100168
Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai Q, Tran AB, Paull M, Keasling JD, Arkin AP, Endy D (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10:354. https://doi.org/10.1038/nmeth.2404
Nguyen T, Roehner N, Zundel Z, Myers CJ (2016) A converter from the systems biology markup language to the synthetic biology open language. ACS Synth Biol 5:479–486. https://doi.org/10.1021/acssynbio.5b00212
Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016) Genetic circuit design automation. Science 352(6281):aac7341. https://doi.org/10.1126/science.aac7341
Nistala GJ, Wu K, Rao CV, Bhalerao KD (2010) A modular positive feedback-based gene amplifier. J Biol Eng 4:1–8
Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006) Regulon and promoter analysis of the E. coli heat-shock factor, α32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789. https://doi.org/10.1101/gad.1428206.but
Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JJ (2014) Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat Methods 11:449. https://doi.org/10.1038/nmeth.2884
Oyarzún DA, Stan G-BV (2012) Synthetic gene circuits for metabolic control: design trade-offs and constraints. J R Soc Interface 10:20120671
Oyarzún DA, Lugagne J-B, Stan G-BV (2015) Noise propagation in synthetic gene circuits for metabolic control. ACS Synth Biol 4:116–125. https://doi.org/10.1021/sb400126a
Pédelacq J-D, Cabantous S, Tran T, Thomas C, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–89. https://doi.org/10.1038/nbt1172
Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Aqa T, Gracindo A, Cesar MB, Paulo J, Freire C, Costa AFM, Lins MRCR, Correa GG, Cerri MO (2018) Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol 37:100. https://doi.org/10.1016/j.tibtech.2018.09.005
Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A, Drescher K, Wingreen NS, Bassler BL, Gitai Z, Stone HA (2015) The mechanical world of Bacteria. Cell 161:988–997. https://doi.org/10.1016/j.cell.2015.05.005
Qing G, Ma L, Khorchid A, Swapna GVT, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877. https://doi.org/10.1038/nbt984
Quan J, Tian J (2014) Circular polymerase extension cloning. In: DNA cloning and assembly methods. Humana Press, pp 103–117
Raimbault B, Cointet J, Joly P (2016) Mapping the emergence of synthetic biology. PLoS One 11:e0161522. https://doi.org/10.1371/journal.pone.0161522
Rhodius VA, Segall-shapiro TH, Sharon BD, Ghodasara A, Orlova E, Tabakh H, Burkhardt DH, Clancy K, Peterson TC, Gross CA, Voigt CA (2013) Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters. Mol Syst Biol 9:1–13. https://doi.org/10.1038/msb.2013.58
Ronzon T, Lusser M, Klinkenberg M, Landa L, Sanchez Lopez J, M’Barek R, Hadjamu G, Belward A, Camia A, Giuntoli J, Cristobal J, Parisi C, Ferrari E, Marelli L, Torres de Matos C, Gomez Barbero M, Rodriguez Cerezo E (2017) JRC science for policy report. Bioeconomy report 2016. www.addgene.org
Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42
Saltepe B, Kehribar ES, Su Yirmibeşoğlu SS, Şafak Şeker UO (2017) Cellular biosensors with engineered genetic circuits. ACS Sensors 3:13–26. https://doi.org/10.1021/acssensors.7b00728
Segall-shapiro TH, Meyer AJ, Ellington AD, Sontag ED, Voigt CA (2014) A “resource allocator” for transcription based on a highly fragmented T 7 RNA polymerase. Mol Syst Biol 10:742
Sengupta P, Garrity P (2013) Sensing temperature. Curr Biol 23:R304–R307. https://doi.org/10.1016/j.cub.2013.03.009
Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16. https://doi.org/10.1093/nar/gkn991
Shapira P, Kwon S, Youtie J (2017) Tracking the emergence of synthetic biology. Scientometrics 112:1439–1469. https://doi.org/10.1007/s11192-017-2452-5
Shaw WM, Yamauchi H, Mead J, Wigglesworth M, Ladds G, Ellis T (2019) Engineering a model cell for rational tuning of GPCR Signaling. Cell 177:782–796. https://doi.org/10.1016/j.cell.2019.02.023
Shis DL, Bennett MR, Igoshin OA (2018) Dynamics of bacterial gene regulatory networks. Annu Rev Biophys 47:447–467
Storch M, Casini A, Mackrow B, Fleming T, Trewhitt H, Ellis T, Baldwin GS (2015) BASIC: a new biopart assembly standard for idempotent cloning provides accurate, single-tier DNA assembly for synthetic biology. ACS Synth Biol 4:781–787. https://doi.org/10.1021/sb500356d
Taylor GM, Mordaka PM, Heap JT (2019) Start-stop assembly: a functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Res 47:e17. https://doi.org/10.1093/nar/gky1182
Temme K, Hill R, Segall-shapiro TH, Moser F, Voigt CA (2012) Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 40:8773–8781. https://doi.org/10.1093/nar/gks597
Torella JP, Boehm CR, Lienert F, Chen J, Way JC, Silver PA (2014) Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Res 42:681–689. https://doi.org/10.1093/nar/gkt860
Trubitsyna M, Michlewski G, Cai Y, Elfick A, French E (2014) PaperClip: rapid multi-part DNA assembly from existing libraries. Nucleic Acids Res 42:e154. https://doi.org/10.1093/nar/gku829
Tschirhart T, Kim E, Mckay R, Ueda H, Wu H, Pottash AE, Zargar A, Negrete A, Shiloach J, Payne GF, Bentley WE (2017) Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat Commun 8:14030. https://doi.org/10.1038/ncomms14030
Venturelli OS, Tei M, Bauer S, Chan LJG, Petzold CJ, Arkin AP (2017) Programming mRNA decay to modulate synthetic circuit resource allocation. Nat Commun 8:15128. https://doi.org/10.1038/ncomms15128
Walper SA, Lasarte Aragonés G, Sapsford KE, III BCW, Rowland CE, Breger JC, Medintz IL (2018) Detecting biothreat agents: from current diagnostics to developing sensor technologies. ACS Sensors 3:1894–2024. https://doi.org/10.1021/acssensors.8b00420
Wan X, Ho TYH, Wang B (2019a) Engineering prokaryote synthetic biology biosensors. In: Handbook of cell biosensors. Springer, Cham, pp 1–37
Wan X, Volpetti F, Petrova E, French C, Maerkl SJ, Wang B (2019b) Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol 15:540–548. https://doi.org/10.1038/s41589-019-0244-3
Wang F, Zhang W (2019) Synthetic biology: recent progress , biosafety and biosecurity concerns, and possible solutions. J Biosaf Biosecurity 1:22–30. https://doi.org/10.1016/j.jobb.2018.12.003
Wang B, Barahona M, Buck M (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 40:368–376. https://doi.org/10.1016/j.bios.2012.08.011
Watanabe L, Nguyen T, Zhang M, Zundel Z, Zhang Z, Madsen C, Roehner N, Myers CJ (2018) iBioSim 3: a tool for model-based genetic circuit design. ACS Synth Biol 8:1560. https://doi.org/10.1021/acssynbio.8b00078
Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765. https://doi.org/10.1371/journal.pone.0016765
Weeding E, Houle J, Kaznessis YN (2010) SynBioSS designer: a web-based tool for the automated generation of kinetic models for synthetic biological constructs. Brief Bioinform 11:394–402. https://doi.org/10.1093/bib/bbq002
White BA (1993) PCR protocols: current methods and applications. Springer Science & Business Media, Totowa
Wong A, Wang H, Poh CL, Kitney RI (2015) Layering genetic circuits to build a single cell bacterial half adder. BMC Biol 13:1–16. https://doi.org/10.1186/s12915-015-0146-0
Wood JM (1999) Osmosensing by Bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262
Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997. https://doi.org/10.1039/c4cs00370e
Yeoh JW, Ivan Ng KB, Teh AY, Zhang J, David Chee WK, Poh CL (2019) An automated biomodel selection system (BMSS) for gene circuit designs. ACS Synth Biol 8:1484. https://doi.org/10.1021/acssynbio.8b00523
Yuan J, Jin F, Glatter T, Sourjik V (2017) Osmosensing by the bacterial PhoQ/PhoP two-component system. Proc Natl Acad Sci 114:E10792–E10798. https://doi.org/10.1073/pnas.1717272114
Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA, Toettcher JE, Avalos JL (2018) Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555:683. https://doi.org/10.1038/nature26141
Zou R, Zhou K, Stephanopoulos G, Too HP (2013) Combinatorial engineering of 1-deoxy-D-Xylulose 5-phosphate pathway using cross-lapping in vitro assembly ( CLIVA ) method. PLoS One 8:e79557. https://doi.org/10.1371/journal.pone.0079557
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this entry
Cite this entry
Yeoh, J.W., Gomez-Carretero, S., Chee, W.K.D., Teh, A.Y., Poh, C.L. (2020). Genetic Circuit Design Principles. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_171-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-47405-2_171-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47405-2
Online ISBN: 978-3-319-47405-2
eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science