Skip to main content

Sol-Gel Process, Structure, and Properties

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors
  • 192 Accesses

Abstract

The sol-gel technology provides a highly versatile route to metal oxide materials. It now belongs to the toolbox of many academic and industrial researchers. It is based on a polymerization process that starts from ions or molecules and ends with gels, powders, thin films, and ceramics, among others. It is compatible with the formation of hybrid materials where organic and biological species are intimately associated with an inorganic backbone. However, a deep understanding of the underlying chemical and processing parameters is required to fully control the structure and properties of the final materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramoff B, Klein LC (1991) Mechanical properties of silica xerogels. J Am Ceram Soc 74:1469–1471

    Article  CAS  Google Scholar 

  • Adachi T, Sakka S (1988) The role of N,N-dimethylformamide, a DCCA, in the formation of silica gel monoliths by sol-gel method. J Non-Cryst Solids 99:118–128

    Article  CAS  Google Scholar 

  • Alifanti M, Baps B, Blangenois N, Naud J, Grange P, Delmon B (2003) Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and Sol-Gel preparation methods. Chem Mater 15:395–403

    Article  CAS  Google Scholar 

  • Asgari S, Bagheri H, Es-haghi A (2018) Imprinted silica nanofiber formation via sol–gel-electrospinning for selective micro solid phase extraction. New J Chem 42:13864–13872

    Article  CAS  Google Scholar 

  • Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  • Barczak M (2018) Template removal from mesoporous silicas using different methods as a tool for adjusting their properties. New J Chem 42:4181–4191

    Article  Google Scholar 

  • Ben Ahmed M, Masse S, Laurent G, Piquemal JY, Yéprémian C, Brayner R, Coradin T (2018) Optical microalgal biosensors for aqueous contaminants using organically doped silica as cellular hosts. Anal Bioanal Chem 410:1205–1216

    Article  CAS  Google Scholar 

  • Blondeau M, Coradin T (2012) Living materials from sol–gel chemistry: current challenges and perspectives. J Mater Chem 22:22335–22343

    Article  CAS  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston

    Google Scholar 

  • Brinker CJ, Hurd AJ, Schunk PR et al (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147–148:424–436

    Article  Google Scholar 

  • Calvo A, Joselevich M, Soler-Illia GJAA et al (2009) Chemical reactivity of amino-functionalized mesoporous silica thin films obtained by co-condensation and post-grafting routes. Microporous Mesoporous Mater 121:67–72

    Article  CAS  Google Scholar 

  • Cano-Casanova L, Amoros-Perez A, Lillo-Rodenas MA et al (2018) Effect of the preparation method (sol-gel or hydrothermal) and conditions on the TiO2 properties and activity for propene oxidation. Materials 11:2227

    Article  PubMed Central  CAS  Google Scholar 

  • Cansell F, Aymonier C, Loppinet-Serani A (2003) Review on materials science and supercritical fluids. Curr Opin Solid State Mater Sci 7:331–340

    Article  CAS  Google Scholar 

  • Ciriminna R, Fidalgo A, Pandarus V et al (2013) The sol-gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620

    Article  PubMed  CAS  Google Scholar 

  • Coradin T, Lopez PJ (2003) Biogenic silica patterning: simple chemistry or subtle biology? ChemBioChem 4:251–259

    Article  PubMed  CAS  Google Scholar 

  • Coradin T, Durupthy O, Livage J (2002) Interactions of amino-containing peptides with sodium silicate and colloidal silica: a biomimetic approach of Silicification. Langmuir 18:2331–2336

    Article  CAS  Google Scholar 

  • Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112

    Article  CAS  Google Scholar 

  • Debecker DP, Hulea C, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: a review. Appl Catal A 451:192–206

    Article  CAS  Google Scholar 

  • Depagne C, Roux C, Coradin T (2011) How to design cell-based biosensors using the sol–gel process. Anal Bioanal Chem 400:965–976

    Article  PubMed  CAS  Google Scholar 

  • Destino JF, Dudukovic NA, Johnson MA et al (2018) 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks. Adv Mater Technol 3:1700323

    Article  CAS  Google Scholar 

  • Mann S, Burkett SL, Davis SA et al (1997) Sol–gel synthesis of organized matter. Chem Mater 9:2300–2310

    Article  CAS  Google Scholar 

  • Ehrlich H, Demadis KD, Pokrosky OS et al (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4656–4689

    Article  PubMed  CAS  Google Scholar 

  • Faustini M, Nicole L, Ruiz-Hitzky E et al (2018) History of organic-inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv Funct Mater 28:1704158

    Article  CAS  Google Scholar 

  • Garay JE (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Sci 40:445–468

    Article  CAS  Google Scholar 

  • Gawel B, Gawel K, Oye G (2010) Sol-gel synthesis of non-silica monolithic materials. Materials 3:2815–2833

    Article  PubMed Central  CAS  Google Scholar 

  • Harris FW (1981) Introduction to polymer chemistry. J Chem Educ 58:837–843

    Article  CAS  Google Scholar 

  • Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica. John Wiley, New York

    Google Scholar 

  • Jolivet JP (2000) Metal oxide chemistry and synthesis. Wiley, New York

    Google Scholar 

  • Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  PubMed  CAS  Google Scholar 

  • Kickelbick G (ed) (2007) Hybrid materials: synthesis, characterization, and applications. Weinheim, Wiley-VCH Verlag GmbH

    Google Scholar 

  • Kolb D, Kolb KE (1979) The chemistry of glass. J Chem Educ 56:604–608

    Article  CAS  Google Scholar 

  • Levy D, Zayat M (eds) (2015) The sol-gel handbook. Weinheim, Wiley-VCH Verlag GmbH

    Google Scholar 

  • Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid St Chem 18:259–341

    Article  CAS  Google Scholar 

  • Loy DA, Baugher BM, Baugher CR et al (2000) Substituent effects on the sol-gel chemistry of Organotrialkoxysilanes. Chem Mater 12:3624–3632

    Article  CAS  Google Scholar 

  • Marycz K, Krzak J, Urbanski W et al (2014) In vitro and in vivo evaluation of sol-gel derived TiO2 coatings based on a variety of precursors and synthesis conditions. J Nanomater 2014:350579

    Article  CAS  Google Scholar 

  • Papirer E (ed) (2000) Adsorption on silica surfaces. Marcel Dekker, New York

    Google Scholar 

  • Park SS, Mackenzie JD (1995) Sol-gel-derived tin oxide thin films. Thin Solid Films 258:268–273

    Article  CAS  Google Scholar 

  • Partlow DP, Gurkovich SR, Radford KC et al (1991) Switchable vanadium oxide films by a sol-gel process. J Appl Phys 70:443–452

    Article  CAS  Google Scholar 

  • Patarin J, Lebeau B, Zana R (2002) Recent advances in the formation mechanisms of organized mesoporous materials. Curr Opin Colloid Interface Sci 7:107–115

    Article  CAS  Google Scholar 

  • Pierre AC (ed) (1998) Introduction to sol-gel processing. Springer, New York

    Google Scholar 

  • Ponthieu E, Payen E, Pajonk GM et al (1997) Comparison of drying procedures for the preparation of alumina powders with the system Al-Alkoxide/tertiary Butanol/water. J Sol-Gel Sci Technol 8:201–206

    CAS  Google Scholar 

  • Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527–534

    Article  PubMed  CAS  Google Scholar 

  • Sakka S (ed) (2005) Handbook of sol-gel science. Springer Science+Business Media, New York

    Google Scholar 

  • Sarawade PB, Kim JK, Hilonga A et al (2011) Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate. Microp Mesop Mater 139:138–147

    Article  CAS  Google Scholar 

  • Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem Mater 13:3306–3319

    Article  CAS  Google Scholar 

  • Shimizu T, Kanamori K, Maeno A et al (2016) Transparent, highly insulating polyethyl- and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying. Chem Mater 28:6860–6868

    Article  CAS  Google Scholar 

  • Silverman BM, Wieghaus KA, Schwartz J (2005) Comparative properties of Siloxane vs phosphonate monolayers on a Kay titanium alloy. Langmuir 21:225–228

    Article  PubMed  CAS  Google Scholar 

  • Soler-Illia GJAA, Azzaroni O (2011) Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40:1107–1150

    Article  PubMed  CAS  Google Scholar 

  • Spitz RN, Barton JE, Barteau MA et al (1986) Characterization of the surface acid-base properties of metal oxides by titration/displacement reactions. J Phys Chem 90:4067–4075

    Article  CAS  Google Scholar 

  • Turova NY, Turevskaya EP, Kessler VG et al (2002) The chemistry of metal alkoxides. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Vioux A (1997) Nonhydrolytic sol-gel routes to oxides. Chem Mater 9:2292–2299

    Article  CAS  Google Scholar 

  • Wei Y, Jin D, Brennan DJ et al (1998a) Atomic force microscopy study of organic-inorganic hybrid materials. Chem Mater 10:769–772

    Article  CAS  Google Scholar 

  • Wei Y, Jin D, Yang C et al (1998b) Organic-inorganic hybrid materials: relations of thermal and mechanical properties with structures. Mater Sci Eng C 6:91–98

    Article  Google Scholar 

  • Yang Y, Li LH, Li Y et al (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 45:481–558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Coradin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Coradin, T. (2020). Sol-Gel Process, Structure, and Properties. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_141-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_141-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics