Obesity pp 89-108 | Cite as

Obesity Pathogenesis

  • Roberto VettorEmail author
  • Scilla Conci
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Obesity represents a complex chronic disease; likewise, its pathogenesis is characterized by a multifactorial, intricate interplay between environmental, genetic, and epigenetic factors. A sedentary lifestyle together with an excess calories intake set on a genetic predisposing background, which can be further modulated through epigenetic modifications. Among genetic mutations, the most important FTO region was found to correlate with obesity and its complications development, together with several other genes involved in food intake and body weight regulation. Moreover, the concept of a circadian clock disruption, induced by the gradual change in lifestyle habits, seems to strongly contribute to those metabolic and endocrine alterations which favor obesity development.

The mechanisms regulating hunger and satiety in our body are extremely complex, involving several organs and systems which in turn interact with the external environment integrating different kind of inputs. The central nervous system (CNS) communicates to the peripheral organs, sending and receiving a whole range of signals including mechanic, hormonal, and nervous stimuli, which mediate a cross-talk not just with the central brain but also between lower systems. In the CNS, the main regions involved in food intake regulation are located in the hypothalamus; the mesolimbic hedonic pathway carries out a different kind of food intake control which involves the more instinct drivings. Several hormones secreted by gastrointestinal tract, adipose tissue, and pancreatic-liver axis, such as glucagon-like peptide (GLP-1), leptin, and insulin, are well-known factors acting on this fine regulation system. Other central regulators, identified more recently, are represented by the big family of the skeletal muscle produced hormones, the myokines, and the gut microbiota, whose alteration seems to be crucial in obesity development.

Adiposity does not represent a pathologic condition per se; indeed, the concept of “sick fat” refers to all those local modifications occurring in adipose tissue and gradually involving the body systemically, which set at the cell site, and finally lead to disease. Adiposopathy is typically characterized at the cell level by adipose cell hypertrophy, visceral fat accumulation, tissue fibrosis, and low-grade inflammation. These alterations could lead to the preferential challenging of fatty free acids (FFA) towards other organs outside adipose tissue with an ectopic lipid and fat accumulation, a phenomenon called lipotoxicity which is strongly related to the appearance or worsening of insulin resistance. At this final step, the obesity-associated complications develop. Indeed, pathological obesity typically correlates with metabolic syndrome, i.e., type 2 diabetes mellitus, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and cardiovascular complications.


Obesity pathogenesis Multiorgan cross-talk Adiposopathy 


  1. Batterham RL, ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, Williams SC. Nature. 2007;450(7166):106–9.PubMedCrossRefGoogle Scholar
  2. Bays H. Adiposopathy, “sick fat”, Ockham’s razor and resolution of obesity paradox. Curr Atheroscler Rep. 2014;16(5):409.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S, Chakrabarti S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem. 2015;399(1–2):95–103.PubMedCrossRefGoogle Scholar
  5. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocytes death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55.PubMedCrossRefGoogle Scholar
  6. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V, Abdennur NA, Liu J, Svensson PA, Hsu YH, Drucker DJ, Mellgren G, Hui CC, Hauner H, Kellis MFTO. Obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373(10):895–907.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.PubMedCrossRefGoogle Scholar
  8. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.PubMedCrossRefGoogle Scholar
  9. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in humans. N Engl J Med. 2009;360(15):1509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  10. De Lartigue G, Lur G, Dimaline R, Varro A, Raybould H, Dockray GJ. EGR1 is a target for cooperative interactions between CCK and leptin and inhibition by ghrelin in vagal afferent neurons. Endocrinology. 2010;151(8):3589–99.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Denis GV, Obin MS. Metabolically healthy obesity: origin is and implications. Mol Asp Med. 2013;34(1):59–70.CrossRefGoogle Scholar
  12. Dockray G. Gastrointestinal hormones and the dialogue between gut and brain. J Physiol. 2014;592(14):2927–41.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010;103(2):71–83.PubMedCrossRefGoogle Scholar
  14. Fall T, Mendelson M, Speliotes EK. Recent advances in human genetics and epigenetics of adiposity: pathway to precision medicine? Gastroenterology. 2017;152(7):1695–706.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Fox CS, Pencina MJ, Heard-Costa NL, Shrader P, Jaquish C, O’Donnell CJ, Vasan RS, Cupples LA, D’Agostino RB. Trends in the association of parental history of obesity over 60 years. Obesity (Silver Spring). 2014;22(3):919–24.CrossRefGoogle Scholar
  16. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gniuli D, Calcagno A, Caristo ME, Mancuso A, Macchi V, Mingrone G, Vettor R. Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J Lipid Res. 2008;49(9):1936–45.PubMedCrossRefGoogle Scholar
  18. Gray SM, Meijer RI, Barrett EJ. Insulin regulates brain function but how does it get there? Diabetes. 2014;63(12):3992–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, Marschall S, Hrabě de Angelis M, Beckers J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48(5):497–9.PubMedCrossRefGoogle Scholar
  20. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of Adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev. 2017;18(6):603–34.PubMedCrossRefGoogle Scholar
  22. Kieffer TJ, Habener JF. The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab. 2000;278(1):E1–E14.PubMedCrossRefGoogle Scholar
  23. Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B, Barsh GS, Kahn CR, Cowley MA, Ashcroft FM, Brüning JC. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438–49.PubMedCrossRefGoogle Scholar
  24. Laermans J, Depoortere I. Chronobesity: role of the circadian system in the obesity epidemic. Obes Rev. 2016;17(2):108–25.PubMedCrossRefGoogle Scholar
  25. Lee YS, Kim JW, Osborne O, DY O, Sasik R, Schenk S, Chen A, Chung H, Murphy A, Watkins SM, Quehenberger O, Johnson RS, Olefsky JM. Increased adipocyte O2 consumption triggers HIF-1 alpha, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–52.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedCrossRefGoogle Scholar
  27. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.PubMedCrossRefGoogle Scholar
  28. Oñate B, Vilahur G, Camino-López S, Díez-Caballero A, Ballesta-López C, Ybarra J, Moscatiello F, Herrero J, Badimon L. Stem cells isolated from AT of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013;14:625.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest. 2015;125(3):908–17.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1–2):20–44.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone. 2015;80:115–25.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000;404(6778):661–671.PubMedCrossRefGoogle Scholar
  33. Secher A, Jelsing J, Baquero AF, Hecksher-Sørensen J, Cowley MA, Dalbøge LS, Hansen G, Grove KL, Pyke C, Raun K, Schäffer L, Tang-Christensen M, Verma S, Witgen BM, Vrang N, Bjerre Knudsen L. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014;124(10):4473–88.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Seoane-Collazo P, Fernø J, Gonzalez F, Diéguez C, Leis R, Nogueiras R, López M. Endocrine. 2015;50(2):276–91.PubMedCrossRefGoogle Scholar
  35. Seppälä-Lindroos A, Vehkavaara S, Häkkinen AM, Goto T, Westerbacka J, Sovijärvi A, Halavaara J, Yki-Järvinen H. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8.PubMedCrossRefGoogle Scholar
  36. Shimabukuro M, Kozuka C, Taira S, Yabiku K, Dagvasumberel M, Ishida M, Matsumoto S, Yagi S, Fukuda D, Yamakawa K, Higa M, Soeki T, Yoshida H, Masuzaki H, Sata M. Ectopic fat deposition and global cardiometabolic risk: new paradigm in cardiovascular medicine. J Clin Invest. 2013;60(1–2):1–14.Google Scholar
  37. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH, Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S, Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC, Gomez-Skarmeta JL, Nóbrega MA. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, Rydén M, Frisén J, Arner P. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.PubMedCrossRefGoogle Scholar
  39. Sun K, Tordjman J, Clément K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013;18(4):470–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17(5):644–56.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514–29.PubMedCrossRefGoogle Scholar
  42. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.PubMedCrossRefGoogle Scholar
  43. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR. A role for GLP-1 in central regulation of feeding. Nature. 1996;379(6560):69–7217.PubMedCrossRefGoogle Scholar
  44. Wardle J, Carnell S, Haworth CM, Plomin R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87(2):398–404.PubMedCrossRefGoogle Scholar
  45. Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20:1006–17.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clinica Medica 3, Department of Medicine - DIMEDUniversity of PaduaPaduaItaly

Personalised recommendations