Obesity pp 75-88 | Cite as

Roles of Gut Hormones in the Regulation of Food Intake and Body Weight

  • Lidia Castagneto Gissey
  • James Casella Mariolo
  • Geltrude MingroneEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)


The gastrointestinal tract is extremely rich in endocrine cells and secretes a myriad of hormones, including ghrelin, glucagon-like peptide 1(GLP1), gastric inhibitory peptide (GIP), cholecystokinin (CCK), amylin, peptide YY (PYY), oxyntomodulin, and leptin. Mechanical distention of the stomach elicits mechanoreceptors within the gastric wall sensing tension, stretch, and volume, which then send brain signals through vagal and spinal sensory nerves.

Both stomach and gut are tightly connected with the central nervous system where the fullness sensation is elaborated. Peripheral signaling hormones regulate appetite in the hypothalamic arcuate nucleus through anorexigenic and orexigenic signals. The gut–hindbrain axis is sufficient to drive the satiation sensation, although hindbrain also communicates with the forebrain where sensory and cognitive processes linked to meal anticipation and learned associations play a relevant role in the anticipation of food reward and pleasure.

We report an overview of the intestinal mechanisms regulating satiety and body weight with particular emphasis to the effects of drugs and bariatric/metabolic surgery on gut hormonal secretion.


Gastrointestinal hormones Nervous system Satiety Appetite 


  1. Anderberg RH, Richard JE, Eerola K, López-Ferreras L, Banke E, Hansson C, Nissbrandt H, Berqquist F, Gribble FM, Reimann F, Wernstedt Asterholm I, Lamy CM, Skibicka KP. Glucagon-like peptide 1 and its analogs act in the dorsal raphe and modulate central serotonin to reduce appetite and body weight. Diabetes. 2017;66:1062–73.CrossRefGoogle Scholar
  2. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.CrossRefGoogle Scholar
  3. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12:917–24.CrossRefGoogle Scholar
  4. Bi S, Scott KA, Kopin AS, Moran TH. Differential roles for cholecystokinin a receptors in energy balance in rats and mice. Endocrinology. 2004;145:3873–80.CrossRefGoogle Scholar
  5. Brown JC, Pederson RA. A multiparameter study on the action of preparations containing cholecystokinin-pancreozymin. Scand J Gastroenterol. 1970;5:537–41.PubMedGoogle Scholar
  6. Brown JC, Mutt V, Pederson RA. Further purification of a polypeptide demonstrating enterogastrone activity. J Physiol. 1970;209:57–64.CrossRefGoogle Scholar
  7. Brownley KA, Heymen S, Hinderliter AL, MacIntosh B. Effect of glycemic load on peptide-YY levels in a biracial sample of obese and normal weight women. Obesity. 2010;18:1297–303.CrossRefGoogle Scholar
  8. Clerc P, Coll Constans MG, Lulka H, Broussaud S, Guigné C, Leung-Theung-Long S, Perrin C, Knauf C, Carpéné C, Pénicaud L, Seva C, Burcelin R, Valet P, Fourmy D, Dufresne M. Involvement of cholecystokinin 2 receptor in food intake regulation: hyperphagia and increased fat deposition in cholecystokinin 2 receptor-deficient mice. Endocrinology. 2007;148:1039–49.CrossRefGoogle Scholar
  9. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.CrossRefGoogle Scholar
  10. De Giorgi S, Campos V, Egli L, Toepel U, Carrel G, Cariou B, Rainteau D, Schneiter P, Tappy L, Giusti V. Long-term effects of roux-en-Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabeticsubjects: a cross-sectional pilot study. Clin Nutr. 2015;34:911–7.CrossRefGoogle Scholar
  11. Egerod KL, Engelstoft MS, Grunddal KV, Nøhr MK, Secher A, Sakata I, Pedersen J, Windeløv JA, Füchtbauer EM, Olsen J, Sundler F, Christensen JP, Wierup N, Olsen JV, Holst JJ, Zigman JM, Poulsen SS, Schwartz TW. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology. 2012;153:5782–95.CrossRefGoogle Scholar
  12. Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, Filippaios A, Bowers J, Srnka A, Gavrieli A, Ko BJ, Liakou C, Kanyuch N, Tseleni-Balafouta S, Mantzoros CS. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59:954–65.CrossRefGoogle Scholar
  13. Gault VA, O’Harte FP, Harriott P, Flatt PR. Characterization of the cellular and metabolic effects of a novel enzyme-resistant antagonist of glucose-dependent insulinotropic polypeptide. Biochem Biophys Res Commun. 2002;290:1420–6.CrossRefGoogle Scholar
  14. Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Törnell J, Westermark P, Sundler F, Ahrén B, Betsholtz C. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun. 1998;250:271–7.CrossRefGoogle Scholar
  15. Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature. 1973;245:3235.CrossRefGoogle Scholar
  16. de Heer J, Rasmussen C, Coy DH, Holst JJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia. 2008;51:2263–70.CrossRefGoogle Scholar
  17. Hill DR, Woodruff GN. Differentiation of central cholecystokinin receptor binding sites using the non-peptide antagonists MK-329 and L-365,260. Brain Res. 1990;526:276–83.CrossRefGoogle Scholar
  18. Hill BR, De Souza MJ, Williams NI. Characterization of the diurnal rhythm of peptide YY and its association with energy balance parameters in normal-weight premenopausal women. Am J Physiol Endocrinol Metab. 2011;301:E409–15.CrossRefGoogle Scholar
  19. Hirasawa A, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90–4.CrossRefGoogle Scholar
  20. Irving AD, Smith G, Coubrough H. Long-term metabolic effects of truncal vagotomy and gastrojejunostomy for chronic duodenal ulcer. Clin Nutr. 1985;4:129–33.CrossRefGoogle Scholar
  21. Jacobsen SH, Olesen SC, Dirksen C, Jørgensen NB, Bojsen-Møller KN, Kielgast U, Worm D, Almdal T, Naver LS, Hvolris LE, Rehfeld JF, Wulff BS, Clausen TR, Hansen DL, Holst JJ, Madsbad S. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22:1084–96.CrossRefGoogle Scholar
  22. Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA. 2007;104:15069–74.CrossRefGoogle Scholar
  23. Jordan J, Greenway FL, Leiter LA, Li Z, Jacobson P, Murphy K, Hill J, Kler L, Aftring RP. Stimulation of cholecystokinin-a receptors with GI181771X does not cause weight loss in overweight or obese patients. Clin Pharmacol Ther. 2008;83:281–7.CrossRefGoogle Scholar
  24. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;2:1300–4.CrossRefGoogle Scholar
  25. Labelle M, Boulanger Y, Fournier A, St.-Pierre S, Savard R. Tissue-specific regulation of fat cell lipolysis by NPY in 6-OHDA-treated rats. Peptides. 1997;18:801–8.CrossRefGoogle Scholar
  26. Lieverse RJ, Jansen JB, Masclee AA, Lamers CB. Satiety effects of a physiological dose of cholecystokinin in humans. Gut. 1995;36:176–9.CrossRefGoogle Scholar
  27. Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. Cell. 2015;161:999–1011.CrossRefGoogle Scholar
  28. Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol. 2007;582:379–92.CrossRefGoogle Scholar
  29. Mingrone G, Manco M, Granato L, Calvani M, Scarfone A, Mora EV, Greco AV, Vidal H, Castagneto M, Ferrannini E. Leptin pulsatility in formerly obese women. FASEB J. 2005;19:1380–2.CrossRefGoogle Scholar
  30. Mingrone G, Granato L, Valera-Mora E, Iaconelli A, Calvani MF, Bracaglia R, Manco M, Nanni G, Castagneto M. Ultradian ghrelin pulsatility is disrupted in morbidly obese subjects after weight loss induced by malabsorptive bariatric surgery. Am J Clin Nutr. 2006;83:1017–24.CrossRefGoogle Scholar
  31. Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku A, Tsuda K, Toyokuni S, Hiai H, Mizunoya W, Fushiki T, Holst JJ, Makino M, Tashita A, Kobara Y, Tsubamoto Y, Jinnouchi T, Jomori T, Seino Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8:738–42.CrossRefGoogle Scholar
  32. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10:739–43.CrossRefGoogle Scholar
  33. Opie EL. Pathological changes affecting the islands of Langherans of the pancreas. J Boston Soc Med Sci. 1900;4:251–60.PubMedPubMedCentralGoogle Scholar
  34. Pederson RA, Brown JC. The insulinotropic action of gastric inhibitory polypeptide in the perfused isolated rat pancreas. Endocrinology. 1976;99:780–5.CrossRefGoogle Scholar
  35. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC, le Roux CW, Violante Ortiz R, Jensen CB, Wilding JP, SCALE Obesity and Prediabetes NN8022-1839 Study Group. A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med. 2015;373:11–22.CrossRefGoogle Scholar
  36. Powley TL, Phillips RJ. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav. 2004;82:69–74.CrossRefGoogle Scholar
  37. Reichmann F, Holzer P. Neuropeptide Y: A stressful review. Neuropeptides. 2016;55:99–109.CrossRefGoogle Scholar
  38. Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav. 2004;81:249–73.CrossRefGoogle Scholar
  39. le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DC, Van Gaal L, Ortiz RV, Wilding JP, Skjøth TV, Manning LS, Pi-Sunyer X, SCALE Obesity Prediabetes NN8022-1839 Study Group. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–409.CrossRefGoogle Scholar
  40. Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, Diamond E. The early effect of the roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236–42.CrossRefGoogle Scholar
  41. Shikora S, Toouli J, Herrera MF, Kulseng B, Zulewski H, Brancatisano R, Kow L, Pantoja JP, Johnsen G, Brancatisano A, Tweden KS, Knudson MB, Billington CJ. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013;2013:245683.CrossRefGoogle Scholar
  42. Suzuki S, Ramos EJ, Goncalves CG, Chen C, Meguid MM. Changes in GI hormones and their effect on gastric emptying and transit times after roux-en-Y gastric bypass in rat model. Surgery. 2005;138:283–90.CrossRefGoogle Scholar
  43. Takagi K, Legrand R, Asakawa A, Amitani H, François M, Tennoune N, Coëffier M, Claeyssens S, do Rego JC, Déchelotte P, Inui A, Fetissov SO. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans. Nat Commun. 2013;4:2685.CrossRefGoogle Scholar
  44. Takiguchi S, Takata Y, Funakoshi A, Miyasaka K, Kataoka K, Fujimura Y, Goto T. Kono a disrupted cholecystokinin type-a receptor (CCKAR) gene in OLETF rats. Gene. 1997;197:169–75.CrossRefGoogle Scholar
  45. Thon M, Hosoi T, Ozawa K. Possible integrative actions of leptin and insulin signaling in the hypothalamus targeting energy homeostasis. Front Endocrinol (Lausanne). 2016;7:138.CrossRefGoogle Scholar
  46. Wang G, Tomasi D, Backus W, Wang R, Telang F, Geliebter A, Korner J, Bauman A, Fowler JS, Thanos PK, Volkow ND. Gastric distention activates satiety circuitry in the human brain. NeuroImage. 2008;39:1824–31.CrossRefGoogle Scholar
  47. West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Phys. 1984;246:R776.Google Scholar
  48. Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011;91:795–26.CrossRefGoogle Scholar
  49. Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology. 2009;150:1680–7.CrossRefGoogle Scholar
  50. Wynne K, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54:2390–5.CrossRefGoogle Scholar
  51. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lidia Castagneto Gissey
    • 1
  • James Casella Mariolo
    • 1
  • Geltrude Mingrone
    • 2
    • 3
    Email author
  1. 1.Department of Surgical SciencesSapienza University of RomeRomeItaly
  2. 2.Department of Internal MedicineCatholic UniversityRomeItaly
  3. 3.Diabetes and Nutritional SciencesKing’s College LondonLondonUK

Personalised recommendations